Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = PBT GF30

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4711 KB  
Article
Experimental and Numerical Study of Laser Beam Welding of PBT-G30 for Electronic Housings in Automotive Applications
by Luiz R. R. Silva, Paulo D. P. Nunes, Eduardo A. S. Marques, Ricardo J. C. Carbas and Lucas F. M. da Silva
Polymers 2025, 17(19), 2662; https://doi.org/10.3390/polym17192662 - 1 Oct 2025
Viewed by 776
Abstract
This study investigates the application of laser spot welding to join protective housing components in the automotive electronics industry. The PBT GF 30 components were joined using two primary configurations: a purely overlapping joint and a top-overlap joint, both autogenous (i.e., without filler [...] Read more.
This study investigates the application of laser spot welding to join protective housing components in the automotive electronics industry. The PBT GF 30 components were joined using two primary configurations: a purely overlapping joint and a top-overlap joint, both autogenous (i.e., without filler material). To complement the experimental analysis, a numerical model, previously validated for a simpler joint configuration, was adapted and applied to configurations beyond the overlapping and top-overlap joint, more representative of practical automotive industry components. The results demonstrated that butt-overlap joints exhibited significantly higher strength (85% increase) than purely overlapping joints. This enhancement is attributed to the combined effect of normal and shear stresses in the top-overlap configuration, whereas purely overlapping joints rely solely on shear stress. The validated numerical model accurately predicted the experimental results, including displacement and force values. While minor deviations were observed, the numerical model’s predictions converged within the average experimental values and standard deviation, demonstrating that such a model can be used to precisely design laser-welded joints for similar applications. Full article
Show Figures

Figure 1

15 pages, 4033 KB  
Article
Microstructural and Chemical Analysis of PBT/Glass Fiber Composites: Influence of Fiber Content and Manufacturing on Composite Performance
by Oumayma Hamlaoui, Riadh Elleuch, Hakan Tozan, Imad Tawfiq and Olga Klinkova
Fibers 2025, 13(9), 117; https://doi.org/10.3390/fib13090117 - 28 Aug 2025
Viewed by 1321
Abstract
This paper provides an in-depth analysis of the microstructural characteristics and the chemical content of Polybutylene Terephthalate (PBT) composites that have different contents of Glass Fiber (GF). Blending of VALOX 420 (30 wt% GF/PBT) with unreinforced VALOX 310 allowed the composites to be [...] Read more.
This paper provides an in-depth analysis of the microstructural characteristics and the chemical content of Polybutylene Terephthalate (PBT) composites that have different contents of Glass Fiber (GF). Blending of VALOX 420 (30 wt% GF/PBT) with unreinforced VALOX 310 allowed the composites to be prepared, with control of the concentration and distribution of the GF. The GF reinforcement and PBT matrix were characterized by an advanced microstructural spectrum and spatial analysis to show the influence of fiber density, dispersion, and chemical composition on performance. Findings indicate that GF content has a profound effect on microstructural properties and damage processes, especially traction effects in various regions of the specimen. These results highlight the significance of accurate control of GF during fabrication to maximize durability and performance, which can be used to inform the design of superior PBT/GF composites in challenging engineering applications. The implications of these results are relevant to a number of high-performance sectors, especially in automotive, electrical, and consumer electronic industries, where PBT/GF composites are found in extensive use because of their outstanding mechanical strength, dimensional stability, and thermal resistance. The main novelty of the current research is both the microstructural and chemical assessment of PBT/GF composites in different fiber contents, and this aspect is rather insufficiently studied in the literature. Although the mechanical performance or macro-level aging effects have been previously assessed, the Literature usually did not combine elemental spectroscopy or spatial microstructural mapping to correlate the fiber distribution with the damage mechanisms. Further, despite the importance of GF reinforcement in achieving the right balance between mechanical, thermal, and electrical performance, not much has been conducted in detail to describe the correlation between the microstructure and the evolution of damage in short-fiber composites. Conversely, this paper will use the superior spatial elemental analysis to bring out the effects of GF content and dispersion on micro-mechanisms like interfacial traction, cracking of the matrix, and fiber fracture. We, to the best of our knowledge, are the first to systematically combine chemical spectrum analysis with spatial mapping of PBT/GF systems with varied fiber contents—this allows us to give actionable information on material design and optimized manufacturing procedures. Full article
Show Figures

Figure 1

33 pages, 6102 KB  
Article
Molded Part Warpage Optimization Using Inverse Contouring Method
by Damir Godec, Filip Panđa, Mislav Tujmer and Katarina Monkova
Polymers 2025, 17(17), 2278; https://doi.org/10.3390/polym17172278 - 22 Aug 2025
Viewed by 2084
Abstract
Warpage is among the most prevalent defects affecting injection molded parts. In this study, we aimed to develop methods to minimize warpage through mold design. Common strategies include matching the cavity geometry to the intended shape of the part, adjusting cavity dimensions to [...] Read more.
Warpage is among the most prevalent defects affecting injection molded parts. In this study, we aimed to develop methods to minimize warpage through mold design. Common strategies include matching the cavity geometry to the intended shape of the part, adjusting cavity dimensions to offset material shrinkage, and optimizing the cooling system and critical injection molding parameters. These optimization methods can offer significant improvements, but recently introduced methods that optimize the molded part and mold cavity shape result in higher levels of warpage reduction. In these methods, optimization of the shape of the molded part is achieved by shaping it in the opposite direction of warpage—a method known as inverse contouring. Inverse contouring of molded parts is a design technique in which mold cavities are intentionally modified to incorporate compensatory geometric deviations in regions anticipated to exhibit significant warpage. The final result after molded part ejection and warpage is a significant reduction in deviations between the warped and reference molded part geometries. In this study, a two-step approach for minimizing warpage was used: the first step was optimizing the most significant injection molding parameters, and the second was inverse contouring. In the first step, Response Surface Methodology (RSM) and Autodesk Moldflow Insight 2023 simulations were used to optimize molded part warpage based on three processing parameters: melt temperature, target mold temperature, and coolant temperature. For improved accuracy, a Computer-Aided Design (CAD) model of the warped molded part was exported into ZEISS Inspect 2023 software and aligned with the reference CAD geometry of the molded part. The maximal warpage value after the initial simulation was 1.85 mm based on Autodesk Moldflow Insight simulations and 1.67 mm based on ZEISS Inspect alignment. After RSM optimization, the maximal warpage was 0.73 mm. In the second step, inverse contouring was performed on the molded part, utilizing the initial injection molding simulation results to further reduce warpage. In this step, the CAD model of the redesigned, inverse-contoured molded part was imported into Moldflow Insight to conduct a second iteration of the injection molding simulation. The simulation results were exported into ZEISS Inspect software for a final analysis and comparison with the reference CAD model. The warpage values after inverse contouring were reduced within the range of ±0.30 mm, which represents a significant decrease in warpage of approximately 82%. Both steps are presented in a case study on an injection molded part made of polybutylene terephthalate (PBT) with 30% glass fiber (GF). Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Graphical abstract

7 pages, 1624 KB  
Communication
Thermal Treatment Effects on Structure and Mechanical Properties of Polybutylene Terephthalate and Epoxy Resin Composites Reinforced with Glass Fiber
by Jiangang Deng, Zhenbo Lan, Zhuolin Xu, Wei Long, Qiang Sun and Yu Nie
Polymers 2024, 16(16), 2269; https://doi.org/10.3390/polym16162269 - 10 Aug 2024
Cited by 3 | Viewed by 2440
Abstract
In this study, two types of composites, polybutylene terephthalate (PBT) and epoxy resin (ER), reinforced with 20% of glass fiber (GF) are used as the comparative research objects. Their mechanical properties after thermal aging at 85~145 °C are evaluated by tensile strength and [...] Read more.
In this study, two types of composites, polybutylene terephthalate (PBT) and epoxy resin (ER), reinforced with 20% of glass fiber (GF) are used as the comparative research objects. Their mechanical properties after thermal aging at 85~145 °C are evaluated by tensile strength and fracture morphology analysis. The results show that the composites have similar aging laws. The tensile strength of GF/PBT and GF/ER decrease gradually with the increase of aging temperature, while their elastic moduli are independent of the thermal treatment temperature. Scanning electron microscopy study of the fracture surface shows that separation of glass fiber from PBT and ER matrix becomes more obvious at higher aging temperature. The fibers on the matrix surface appear clear and smooth, and the whole pulled out GFs can be observed. As a main mechanical strength degradation mechanism, the deterioration of interface adhesion between the matrix and GF is discussed. A large difference in coefficients of thermal expansion of the matrix and GF is a main factor of the mechanical degradation. Full article
(This article belongs to the Special Issue New Research on Fiber-Reinforced Polymer Composites: 2nd Edition)
Show Figures

Figure 1

17 pages, 6778 KB  
Article
Enhancing the Design of Experiments on the Fatigue Life Characterisation of Fibre-Reinforced Plastics by Incorporating Artificial Neural Networks
by Christian Witzgall, Moh’d Sami Ashhab and Sandro Wartzack
Materials 2024, 17(3), 729; https://doi.org/10.3390/ma17030729 - 3 Feb 2024
Cited by 1 | Viewed by 2128
Abstract
Fatigue life testing is a complex and costly matter, especially in the case of fibre-reinforced thermoplastics, where other parameters in addition to force alone must be taken into account. The number of tests required therefore increases significantly, especially if the influence of different [...] Read more.
Fatigue life testing is a complex and costly matter, especially in the case of fibre-reinforced thermoplastics, where other parameters in addition to force alone must be taken into account. The number of tests required therefore increases significantly, especially if the influence of different fibre orientations is to be taken into account. It is therefore important to gain the greatest possible amount of knowledge from the limited number of available tests. In order to achieve this, this study aims to utilise adaptive sampling, which is used in numerous areas of computational engineering, for the design of experiments on fatigue life testing. Artificial neural networks (ANNs) are therefore trained on data for the short-fibre-reinforced material PBT GF30, and their areas of greatest model uncertainty are queried. This was undertaken with ANNs from various numbers of hidden layers, which were analysed for their performance. The ideal case turned out to be four hidden layers, for which a squared error as small as 1 × 10−3 was recorded. Locally resolved, the ANN was used to identify the region of greatest uncertainty for samples of vertical orientation and small numbers of cycles. With information such as this, additional data can be obtained in such uncertain regions in order to improve the model prediction—almost halving the recorded error to only 0.55 × 10−3. In this way, a model of comparable value can be found with less experimental effort, or a model of better quality can be set up with the same experimental effort. Full article
(This article belongs to the Special Issue Machine Learning Techniques in Materials Science and Engineering)
Show Figures

Figure 1

18 pages, 6365 KB  
Article
Fatigue Damage of Short Fibre-Reinforced Thermoplastics in Crashworthiness Simulation
by Christian Witzgall and Sandro Wartzack
Appl. Mech. 2023, 4(4), 1188-1205; https://doi.org/10.3390/applmech4040061 - 30 Nov 2023
Cited by 1 | Viewed by 2149
Abstract
Service loads repeatedly stress components on a regular basis and lead to fatigue damage in the material. In the case of components made of short fibre-reinforced thermoplastics, which are also crash-relevant in addition to only bearing service loads, however, a significant deterioration in [...] Read more.
Service loads repeatedly stress components on a regular basis and lead to fatigue damage in the material. In the case of components made of short fibre-reinforced thermoplastics, which are also crash-relevant in addition to only bearing service loads, however, a significant deterioration in mechanical properties can be observed after fatigue damage has been introduced. This is where the approach presented in this paper comes in: in order to enable a realistic simulation of such components in their used conditions, the material data are assigned depending on previously determined damage. The approach, which combines the domains of highly dynamic and cyclic experiments as well as different types of numerical simulations, is tested for its performance in the present paper. For this purpose, component tests are carried out on cross-rib beams, which serve to validate the method. The novelty and uniqueness of this paper lies in the linking of fatigue life and crashworthiness considerations for short fibre-reinforced thermoplastics, which, in this case, is raised to a new level by considering the component level for the first time. Full article
(This article belongs to the Collection Fracture, Fatigue, and Wear)
Show Figures

Figure 1

9 pages, 2499 KB  
Communication
Effect of Thermal Aging on Mechanical Properties and Morphology of GF/PBT Composites
by Xiuqi Xu, Jiangang Deng, Siyu Nie, Zhenbo Lan and Zhuolin Xu
Polymers 2023, 15(18), 3798; https://doi.org/10.3390/polym15183798 - 18 Sep 2023
Cited by 8 | Viewed by 3649
Abstract
The effects of thermal aging at 85~145 °C in air on the tensile and flexural mechanical properties of 20% glass fiber (GF)-reinforced commercial grade polybutylene terephthalate (PBT) composites were studied. The results showed that as the aging temperature increased, the tensile and flexural [...] Read more.
The effects of thermal aging at 85~145 °C in air on the tensile and flexural mechanical properties of 20% glass fiber (GF)-reinforced commercial grade polybutylene terephthalate (PBT) composites were studied. The results showed that as the aging temperature increased, the tensile and flexural strength of the GF/PBT composites significantly decreased. However, the elastic modulus of the composites was almost independent of aging. As the aging temperature increased, the separation between GF and the PBT matrix became more pronounced, and the fibers exposed on the surface of the matrix became clearer and smoother, indicating a decrease in interfacial adhesion between the PBT matrix and GF. The reason for this decrease in strength and brittle fracture of composites is the interface damage between the GF and PBT matrix caused by the difference in their thermal expansion coefficients during thermal aging. Full article
(This article belongs to the Special Issue Polymers and Their Composites Applied in Extreme Environments)
Show Figures

Figure 1

19 pages, 6900 KB  
Article
Effect of the Interface/Interphase on the Water Ingress Properties of Joints with PBT-GF30 and Aluminum Substrates Using Silicone Adhesive
by Catarina S. P. Borges, Eduardo A. S. Marques, Ricardo J. C. Carbas, Alireza Akhavan-Safar, Christoph Ueffing, Philipp Weißgraeber and Lucas F. M. da Silva
Polymers 2023, 15(4), 788; https://doi.org/10.3390/polym15040788 - 4 Feb 2023
Cited by 4 | Viewed by 2528
Abstract
The aim of this work is to analyze the difference between silicone/composite and silicone/metal interphases, both in terms of water diffusion behavior and failure of the aged joints. For that, silicone joints with two different suhbstrates were prepared. The substrates were polybutylene terephthalate [...] Read more.
The aim of this work is to analyze the difference between silicone/composite and silicone/metal interphases, both in terms of water diffusion behavior and failure of the aged joints. For that, silicone joints with two different suhbstrates were prepared. The substrates were polybutylene terephthalate with 30% of short glass fiber (PBT-GF30) and 6082-T6 aluminum. It is assumed that the water uptake of the joints is equal to the water uptake of the substrate, adhesive, and interphase. Therefore, knowing the first three, the last could be isolated. To study the water diffusion behavior of the complete joint, rectangular joints were prepared, immersed in water and their water uptake was measured. The water immersion was conducted at 70 °C. It was concluded that the aluminum/silicone joints absorbed more water through the interphase region than the PBT-GF30/silicone joints, since the difference between the expected water uptake and the experimentally measured mass gain is significantly higher, causing adhesive failure of the joint. The same was not observed in the PBT-GF30/silicone, with a more stable interphase, that does not absorb measurable quantities of water and always exhibits cohesive failure. Full article
(This article belongs to the Special Issue Polymer Blends and Composites)
Show Figures

Figure 1

12 pages, 2923 KB  
Article
On the Influence of Fatigue Damage in Short-Fibre Reinforced Thermoplastic PBT GF30 on Its Residual Strength under High Strain Rates: An Approach towards Simulative Prediction
by Christian Witzgall, Patrick Steck and Sandro Wartzack
J. Compos. Sci. 2023, 7(1), 23; https://doi.org/10.3390/jcs7010023 - 10 Jan 2023
Cited by 3 | Viewed by 4097
Abstract
Only by using accurate material data can precise simulation results be achieved. This principle also and especially applies in the field of crash simulation. However, in the simulation of short-fibre reinforced thermoplastics, material parameters are usually used that originate from the material testing [...] Read more.
Only by using accurate material data can precise simulation results be achieved. This principle also and especially applies in the field of crash simulation. However, in the simulation of short-fibre reinforced thermoplastics, material parameters are usually used that originate from the material testing of as-new samples. In order to get closer to the condition on the roads, where not only new vehicles are driving, the influence of service loads on the crashworthiness has to be investigated. This paper reports on studies of PBT GF30, a polybutylene terephthalate reinforced with 30% glass fibres, in which fatigue damage was induced in the material by cyclic loading. The residual strength was then determined in a high-speed experiment and compared with the strength of virgin samples. In order to enable the usability of the findings in the simulation, a modified failure criterion was implemented that takes the previous fatigue damage into account. The prediction quality of the simulation model was compared with the experimental findings and it can be concluded that there is good agreement. Full article
(This article belongs to the Special Issue Characterization and Modelling of Composites, Volume III)
Show Figures

Figure 1

14 pages, 8576 KB  
Article
Effect of the Glass Fiber Content of a Polybutylene Terephthalate Reinforced Composite Structure on Physical and Mechanical Characteristics
by Oumayma Hamlaoui, Olga Klinkova, Riadh Elleuch and Imad Tawfiq
Polymers 2022, 14(1), 17; https://doi.org/10.3390/polym14010017 - 22 Dec 2021
Cited by 16 | Viewed by 5667
Abstract
This work presents the influences of glass fiber content on the mechanical and physical characteristics of polybutylene terephthalate (PBT) reinforced with glass fibers (GF). For the mechanical characterization of the composites depending on the GF reinforcement rate, tensile tests are carried out. The [...] Read more.
This work presents the influences of glass fiber content on the mechanical and physical characteristics of polybutylene terephthalate (PBT) reinforced with glass fibers (GF). For the mechanical characterization of the composites depending on the GF reinforcement rate, tensile tests are carried out. The results show that increasing the GF content in the polymer matrix leads to an increase in the stiffness of the composite but also to an increase in its brittleness. Scanning Electron Microscope analysis is performed, highlighting the multi-scale dependency on types of damage and macroscopic behavior of the composites. Furthermore, flammability tests were performed. They permit certifying the flame retardancy capacity of the electrical composite part. Additionally, fluidity tests are carried out to identify the flow behavior of the melted composite during the polymer injection process. Finally, the cracking resistance is assessed by riveting tests performed on the considered electrical parts produced from composites with different GF reinforcement. The riveting test stems directly from the manufacturing process. Therefore, its results accurately reflect the fragility of the material used. Full article
Show Figures

Figure 1

24 pages, 3718 KB  
Article
Redesign of the Geometry of Parts Produced from PBT Composite to Improve Their Operational Behavior
by Dan Dobrotă and Sergiu Viorel Lazăr
Polymers 2021, 13(15), 2536; https://doi.org/10.3390/polym13152536 - 31 Jul 2021
Cited by 8 | Viewed by 3000
Abstract
Parts produced from PBT-GF30 (70% polybutylene terephthalate +30% fiberglass) are very often used in car construction, due to the properties of this material. The current trend is to make parts with a shape designed to be as complex as possible, to take over [...] Read more.
Parts produced from PBT-GF30 (70% polybutylene terephthalate +30% fiberglass) are very often used in car construction, due to the properties of this material. The current trend is to make parts with a shape designed to be as complex as possible, to take over many functions in operation. During the research, a part that is a component of the structure of car safety systems, and that must be completely reliable in operation, was analyzed. This piece has a complex shape that involves the intersection of several walls. Thus, the research aimed at establishing the optimal radius of connection between the walls (R), the ratio between the thickness of the intersecting walls (K) and the angle of inclination of the walls (α). The composite central design method was used to design the experiments. Both new parts and parts subject to an artificial aging process were tested. All parts were subjected to shear stress, to determine the load (L) and displacement (D) at which they break. In order to observe other changes in the properties of the parts, in addition to the mechanical ones, an analysis of the color of the new and aged parts was performed, as well as a topography of the surface layer in the breaking area. The design of the parts involved changes to the parameters of the injection process. In these conditions, a PBT-GF30 viscosity analysis was performed for new and artificially aged parts. Full article
(This article belongs to the Special Issue Mechanics of Polymer and Polymer Composite Materials and Structures)
Show Figures

Figure 1

25 pages, 1655 KB  
Article
Effect of Water Ingress on the Mechanical and Chemical Properties of Polybutylene Terephthalate Reinforced with Glass Fibers
by Catarina S. P. Borges, Alireza Akhavan-Safar, Eduardo A. S. Marques, Ricardo J. C. Carbas, Christoph Ueffing, Philipp Weißgraeber and Lucas F. M. da Silva
Materials 2021, 14(5), 1261; https://doi.org/10.3390/ma14051261 - 7 Mar 2021
Cited by 34 | Viewed by 4894
Abstract
Short fiber reinforced polymers are widely used in the construction of electronic housings, where they are often exposed to harsh environmental conditions. The main purpose of this work is the in-depth study and characterization of the water uptake behavior of PBT-GF30 (polybutylene terephthalate [...] Read more.
Short fiber reinforced polymers are widely used in the construction of electronic housings, where they are often exposed to harsh environmental conditions. The main purpose of this work is the in-depth study and characterization of the water uptake behavior of PBT-GF30 (polybutylene terephthalate with 30% of short glass fiber)as well as its consequent effect on the mechanical properties of the material. Further analysis was conducted to determine at which temperature range PBT-GF30 starts experiencing chemical changes. The influence of testing procedures and conditions on the evaluation of these effects was analyzed, also drawing comparisons with previous studies. The water absorption behavior was studied through gravimetric tests at 35, 70, and 130 °C. Fiber-free PBT was also studied at 35 °C for comparison purposes. The effect of water and temperature on the mechanical properties was analyzed through bulk tensile tests. The material was tested for the three temperatures in the as-supplied state (without drying or aging). Afterwards, PBT-GF30 was tested at room temperature following water immersion at the three temperatures. Chemical changes in the material were also analyzed through Fourier-transform infrared spectroscopy (FTIR). It was concluded that the water diffusion behavior is Fickian and that PBT absorbs more water than PBT-GF30 but at a slightly higher rate. However, temperature was found to have a more significant influence on the rate of water diffusion of PBT-GF30 than fiber content did. Temperature has a significant influence on the mechanical properties of the material. Humidity contributes to a slight drop in stiffness and strength, not showing a clear dependence on water uptake. This decrease in mechanical properties occurs due to the relaxation of the polymeric chain promoted by water ingress. Between 80 and 85 °C, after water immersion, the FTIR profile of the material changes, which suggests chemical changes in the PBT. The water absorption was simulated through heat transfer analogy with good results. From the developed numerical simulation, the minimum plate size to maintain the water ingress unidirectional was 30 mm, which was validated experimentally. Full article
(This article belongs to the Special Issue Multiscaling in Polymer Composite Materials)
Show Figures

Figure 1

19 pages, 12705 KB  
Article
Ultrasonic Welding of PBT-GF30 (70% Polybutylene Terephthalate + 30% Fiber Glass) and Expanded Polytetrafluoroethylene (e-PTFE)
by Dan Dobrotă and Sergiu Viorel Lazăr
Polymers 2021, 13(2), 298; https://doi.org/10.3390/polym13020298 - 19 Jan 2021
Cited by 9 | Viewed by 5002
Abstract
The ultrasonic welding of polymeric materials is one of the methods often used in practice. However, each couple of material subjected to ultrasonic welding is characterized by different values of technological parameters. Therefore, the main objective of the research presented in this paper [...] Read more.
The ultrasonic welding of polymeric materials is one of the methods often used in practice. However, each couple of material subjected to ultrasonic welding is characterized by different values of technological parameters. Therefore, the main objective of the research presented in this paper is to optimize the parameters for the ultrasonic welding of two materials, namely PBT-GF30 (70% polybutylene terephthalate + 30% fiber glass) and expanded polytetrafluoroethylene (e-PTFE). In this sense, the research was carried out considering a plate-type part made of PBT-GF30, which had a thickness of 2.1 mm, and a membrane-type part made of e-PTFE, with a thickness of 0.3 mm. The condition imposed on the welded joints made, namely to correspond from a technical point of view, was that the detachment pressure of the membrane should be at least 4 bar. To this end, a test device was designed. Additionally, the topography of the material layer from the plate-type part was analyzed, as well as the chemical composition and surface condition for the membrane-type part. The obtained results allowed the optimization of the following parameters: The welding force; welding time; amplitude; and holding time. All experimental results were processed using STATISTICS software, which established how each parameter influences the characteristics of welded joints. Full article
(This article belongs to the Special Issue Processing-Structure-Properties Relationships in Polymers II)
Show Figures

Graphical abstract

Back to TopTop