Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = Owens Valley

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 10560 KiB  
Article
Fumarolic Pathways Were Structurally Controlled by a Strike-Slip Fault System Beneath the Bishop Tuff, Bishop, California
by William T. Jenkins, Christian Klimczak, Patrick M. Trent and Douglas E. Crowe
Minerals 2021, 11(11), 1167; https://doi.org/10.3390/min11111167 - 22 Oct 2021
Cited by 1 | Viewed by 2402
Abstract
The Volcanic Tableland, a plateau at the northern end of Owens Valley, CA, is capped by the rhyolitic Bishop Tuff. It hosts many tectonic and volcanic landforms, including hundreds of fault scarps, large joint sets, and inactive fumarolic mounds and ridges. The 1986 [...] Read more.
The Volcanic Tableland, a plateau at the northern end of Owens Valley, CA, is capped by the rhyolitic Bishop Tuff. It hosts many tectonic and volcanic landforms, including hundreds of fault scarps, large joint sets, and inactive fumarolic mounds and ridges. The 1986 Chalfant Valley earthquake sequence shed light on a blind strike-slip fault system beneath the Bishop Tuff. The spatial relationships of the volcanic and tectonic structures have previously been well documented, however, the mechanisms of formation of structures and their enhancement as fumarolic pathways remain largely unexplored. We collected fault kinematic indicators, joint orientations, and documented fumarolic alterations of microcrystalline quartz in the Bishop Tuff and combined those field observations with fault response modeling to assess whether strike-slip activity played a key role in the development of fumarolic pathways. We found field evidence of dip-slip and strike-slip faulting that are consistent with the overall transtensional regional tectonics. Our modeling indicates that a blind strike-slip fault system would dilate joints in the overlying Bishop Tuff with preferred orientations that match observed orientations of joints along which fumarolic activity occurred. Our results imply that the localization of fumaroles was tectonically controlled and that fault activity in the valley floor likely initiated prior to tuff emplacement. Full article
Show Figures

Figure 1

20 pages, 5962 KiB  
Article
Analysis of Rock Varnish from the Mojave Desert by Handheld Laser-Induced Breakdown Spectroscopy
by Russell S. Harmon, Daria Khashchevskaya, Michelle Morency, Lewis A. Owen, Morgan Jennings, Jeffrey R. Knott and Jason M. Dortch
Molecules 2021, 26(17), 5200; https://doi.org/10.3390/molecules26175200 - 27 Aug 2021
Cited by 13 | Viewed by 3961
Abstract
Laser-induced breakdown spectroscopy (LIBS) is a form of optical emission spectroscopy that can be used for the rapid analysis of geological materials in the field under ambient environmental conditions. We describe here the innovative use of handheld LIBS for the in situ analysis [...] Read more.
Laser-induced breakdown spectroscopy (LIBS) is a form of optical emission spectroscopy that can be used for the rapid analysis of geological materials in the field under ambient environmental conditions. We describe here the innovative use of handheld LIBS for the in situ analysis of rock varnish. This thinly laminated and compositionally complex veneer forms slowly over time on rock surfaces in dryland regions and is particularly abundant across the Mojave Desert climatic region of east-central California (USA). Following the depth profiling examination of a varnished clast from colluvial gravel in Death Valley in the laboratory, our in situ analysis of rock varnish and visually similar coatings on rock surfaces was undertaken in the Owens and Deep Spring valleys in two contexts, element detection/identification and microchemical mapping. Emission peaks were recognized in the LIBS spectra for the nine elements most abundant in rock varnish—Mn, Fe, Si, Al, Na, Mg, K, Ca and Ba, as well as for H, Li, C, O, Ti, V, Sr and Rb. Focused follow-up laboratory and field studies will help understand rock varnish formation and its utility for weathering and chronological studies. Full article
Show Figures

Graphical abstract

24 pages, 10184 KiB  
Article
Program and Results of Investigations Rapid Variability of the BL Lac Object 3C 371 in Radio and Optical Ranges
by Artem Sukharev, Michail Ryabov, Vladislavs Bezrukovs, Arturs Orbidans, Marcis Bleiders, Sergei Udovichenko, Leonid Keir, Ilgmars Eglitis, Igor Kudsey and Pavol Dubovsky
Galaxies 2020, 8(3), 69; https://doi.org/10.3390/galaxies8030069 - 21 Sep 2020
Cited by 3 | Viewed by 2889
Abstract
BL Lac object 3C 371 is variable in optical and radio range, according to long-term monitoring data, for example AAVSO (American Association of Variable Star Observers) and OVRO (Owens Valley Radio Observatory). In addition, some authors note intra-night variability. However, in terms of [...] Read more.
BL Lac object 3C 371 is variable in optical and radio range, according to long-term monitoring data, for example AAVSO (American Association of Variable Star Observers) and OVRO (Owens Valley Radio Observatory). In addition, some authors note intra-night variability. However, in terms of access, just a few works are devoted to this topic, and questions remain about intra-day variability in radio range. The purpose of the work is to search for fast variability in radio (5, 6.1, 6.7 GHz) and optical bands (V, R, I) using international cooperation in 2019 and 2020 observation sessions. The 16-m radio telescope VIRAC, in Latvia, as well as optical telescopes AZT-3 (Mayaki, Ukraine), VNT (Vihorlat, Slovakia), and Schmidt camera (Baldone, Latvia) were used. To analyze variability, the STFT method of spectrograms and Lomb–Scargle periodograms for non-uniform time series were used. As result of the work, there is no correlation between optical and radio observations, and no significant quasi-harmonic variability was detected in radio range, but there is irregular low amplitude variability. In the optical range, there is variability with a characteristic time of about seven days and possibly less. Cyclical variability of 3C 371 was found in the optical range, and intra-day variability in radio range is most likely absent, as there are irregular variations and noise. It is planned to continue joint radio-optical observations 3C 371 to accumulate the necessary statistics. Full article
Show Figures

Figure 1

31 pages, 3352 KiB  
Article
3C 84: Observational Evidence for Precession and a Possible Relation to TeV Emission
by Silke Britzen, Christian Fendt, Michal Zajaček, Frédéric Jaron, Ilya Pashchenko, Margo F. Aller and Hugh D. Aller
Galaxies 2019, 7(3), 72; https://doi.org/10.3390/galaxies7030072 - 14 Aug 2019
Cited by 25 | Viewed by 4915
Abstract
3C 84 (NGC 1275, Perseus A) is a bright radio source at the center of an ongoing merger, where HST observations show two colliding spiral galaxies. 3C 84 holds promise to improve our understanding about how of the activity of active galactic nuclei, [...] Read more.
3C 84 (NGC 1275, Perseus A) is a bright radio source at the center of an ongoing merger, where HST observations show two colliding spiral galaxies. 3C 84 holds promise to improve our understanding about how of the activity of active galactic nuclei, the formation of supermassive binary black holes, feedback processes, and galaxy collisions are interrelated. 3C,84 is one of only six radio galaxies, which reveal TeV emission. The origin of this TeV emission is still a matter of debate. Our present study is based on high resolution radio interferometric observations (15 GHz) of the pc-scale jet in this complex radio galaxy. We have re-modeled and re-analyzed 42 VLBA observations of 3C 84, performed between 1999.99 and 2017.65. In order to enable a proper alignment of the VLBA observations, we developed a method of a “differential” alignment whereby we select one reference point and minimize the deviations from this reference point in the remaining epochs. As a result, we find strong indication for a precession of the 3C 84 jet—not only for its central regions, but also for the outer lobe at 10 mas distance. These findings are further supported by our kinematic precession modeling of the radio flux-density monitoring data provided by the University of Michigan Radio Observatory and the Owens Valley Radio Observatory, which yields a precession time scale of about 40 yr. This time scale is further supported by literature maps obtained about 40 yr ago (1973 and 1974.1) which reveal a similar central radio structure. We suggest that the TeV flare detected by MAGIC may correlate with the precession of 3C 84, as we disentangle a projected reversal point of the precessing motion that correlates with the flaring time. This may physically be explained by a precessing jet sweeping over a new region of so far undisturbed X-ray gas which would then lead to shock-produced TeV-emission. In addition, we perform a correlation analysis between the radio data and GeV data obtained by the Fermi Gamma-ray Space Telescope and find that the γ -ray data are lagging the radio data by 300–400 days. A possible explanation could be that the radio and the GeV data stem from different emission regions. We discuss our findings and propose that the detected jet precession can also account for the observed cavities in the X-ray emission on kpc-scales. Full article
(This article belongs to the Special Issue Radio Galaxies at TeV Energies)
Show Figures

Figure 1

14 pages, 2276 KiB  
Article
Eocene Origin of Owens Valley, California
by Francis J. Sousa
Geosciences 2019, 9(5), 194; https://doi.org/10.3390/geosciences9050194 - 28 Apr 2019
Cited by 5 | Viewed by 4555
Abstract
Bedrock (U-Th)/He data reveal an Eocene exhumation difference greater than four kilometers athwart Owens Valley, California near the Alabama Hills. This difference is localized at the eastern fault-bound edge of the valley between the Owens Valley Fault and the Inyo-White Mountains Fault. Time-temperature [...] Read more.
Bedrock (U-Th)/He data reveal an Eocene exhumation difference greater than four kilometers athwart Owens Valley, California near the Alabama Hills. This difference is localized at the eastern fault-bound edge of the valley between the Owens Valley Fault and the Inyo-White Mountains Fault. Time-temperature modeling of published data reveal a major phase of tectonic activity from 55 to 50 Ma that was of a magnitude equivalent to the total modern bedrock relief of Owens Valley. Exhumation was likely accommodated by one or both of the Owens Valley and Inyo-White Mountains faults, requiring an Eocene structural origin of Owens Valley 30 to 40 million years earlier than previously estimated. This analysis highlights the importance of constraining the initial and boundary conditions of geologic models and exemplifies that this task becomes increasingly difficult deeper in geologic time. Full article
Show Figures

Figure 1

16 pages, 6942 KiB  
Article
Identification of Source Water Mixing in the Fish Slough Spring Complex, Mono County, California, USA
by Andy Zdon, Keith Rainville, Nicholas Buckmaster, Steve Parmenter and Adam H. Love
Hydrology 2019, 6(1), 26; https://doi.org/10.3390/hydrology6010026 - 20 Mar 2019
Cited by 6 | Viewed by 4576
Abstract
While the desert ecosystem is highly dependent on the water resources that sustain it, the Fish Slough spring complex is an arid, spring-dependent wetland undergoing a multidecadal decline in spring outflow. This evaluation updates the source water forensics of the Fish Slough Spring [...] Read more.
While the desert ecosystem is highly dependent on the water resources that sustain it, the Fish Slough spring complex is an arid, spring-dependent wetland undergoing a multidecadal decline in spring outflow. This evaluation updates the source water forensics of the Fish Slough Spring complex, a substantial spring complex in the northern Owens Valley of the Basin and Range geomorphic provinces, in order to better understand the nature of the spring flow decline. The source of spring flow at Fish Slough was evaluated through an integration of the established geologic setting with measured groundwater elevations, and water quality and isotope chemistry compiled from both previously published sources and collection of new samples. While previous efforts to source the Fish Slough springs only considered potential source areas within the local geography, this evaluation considered a larger geographic extent for potential source areas to the spring water. The results infer that Fish Slough springs are sourced from multiple source water areas in hydraulic communication: a basin fill aquifer and warm, sodic spring systems with distinctive chemical signatures. Mixing from these sources occurs along two hypothesized flow paths, one from the northeast through the Tri-Valley area and one from the north and northwest through the Volcanic Tablelands. Northeast Spring has the strongest signature for Tri-Valley area waters, whereas the remaining Fish Slough Springs are comprised of a mixture of both flow paths. These conclusions have important implications for water management activities that have the potential to impact the desert ecosystem supported by these springs. Full article
Show Figures

Graphical abstract

40 pages, 10609 KiB  
Article
Structural Evolution of the East Sierra Valley System (Owens Valley and Vicinity), California: A Geologic and Geophysical Synthesis
by Calvin H. Stevens, Paul Stone and Richard J. Blakely
Geosciences 2013, 3(2), 176-215; https://doi.org/10.3390/geosciences3020176 - 22 Apr 2013
Cited by 5 | Viewed by 15285
Abstract
The tectonically active East Sierra Valley System (ESVS), which comprises the westernmost part of the Walker Lane-Eastern California Shear Zone, marks the boundary between the highly extended Basin and Range Province and the largely coherent Sierra Nevada-Great Valley microplate (SN-GVm), which is moving [...] Read more.
The tectonically active East Sierra Valley System (ESVS), which comprises the westernmost part of the Walker Lane-Eastern California Shear Zone, marks the boundary between the highly extended Basin and Range Province and the largely coherent Sierra Nevada-Great Valley microplate (SN-GVm), which is moving relatively NW. The recent history of the ESVS is characterized by oblique extension partitioned between NNW-striking normal and strike-slip faults oriented at an angle to the more northwesterly relative motion of the SN-GVm. Spatially variable extension and right-lateral shear have resulted in a longitudinally segmented valley system composed of diverse geomorphic and structural elements, including a discontinuous series of deep basins detected through analysis of isostatic gravity anomalies. Extension in the ESVS probably began in the middle Miocene in response to initial westward movement of the SN-GVm relative to the Colorado Plateau. At ca. 3–3.5 Ma, the SN-GVm became structurally separated from blocks directly to the east, resulting in significant basin-forming deformation in the ESVS. We propose a structural model that links high-angle normal faulting in the ESVS with coeval low-angle detachment faulting in adjacent areas to the east. Full article
Show Figures

Figure 1

Back to TopTop