3C 84: Observational Evidence for Precession and a Possible Relation to TeV Emission
Abstract
:1. Introduction
1.1. VLBI Observations of 3C 84
1.2. TeV Emission from 3C 84
2. Methods
2.1. Re-Analysis of VLBA Data
- We only use data from the MOJAVE survey to ensure comparing data obtained at the same frequency and similar quality of the data sets regarding the number of data points and the resolution of the observations.
- By fitting circular Gaussian components we model the details of the complex radio morphology and the substructure, which is usually not modeled due to the complexity of the source structure. Despite the complexity, our goal is to make robust component identifications which are not artifacts of the modeling procedure and then to follow and cross-identify these same components in the imaging time sequence. The model fitting has been performed blindly—each epoch has been modeled independently of other epochs. This enabled an unambiguous analysis of the kinematics.
- Since the “core” position determined in observations at 43 GHz by Giovannini et al. [13] could not be identified unambiguously in all the epochs obtained at 15 GHz, we developed a “differential” alignment method to analyse the complex kinematics in 3C 84. To our knowledge, this differential analysis has not been applied in VLBI data analysis before.
- Within this differential alignment, the central position at epoch 1999.99 has been kept as reference position through the epochs. The deviation in xy-positions of all jet components across the epochs has been minimized.
2.2. Single-Dish Radio Flux-Densities
2.3. Fermi-LAT Data Analysis
3. Results
3.1. Evidence for Jet Precession Based on VLBA Data Analysis
3.2. VLBA Flux-Density Evolution of the Source Structure
3.3. Radio Variability Consistent with Inner Jet Precession on Time-Scales of ∼100 yr
3.4. Correlation between Single-Dish Radio Flux-Density Data and Fermi Gamma-Ray Data
4. Discussion
4.1. Origin of Radio Variability in 3C 84: Variable Jet Activity or Variable Doppler Beaming?
4.2. Possible Causes of the Jet Precession in 3C 84
4.3. GeV-Emission from 3C 84
4.4. Potential Origin of the TeV Emission in 3C 84
4.5. The Derived Time-Scales for Precession in 3C 84
4.5.1. Time-Scales for Precession in 3C 84: VLBI Maps
4.5.2. Time-Scales for Precession in 3C 84: Single-Dish Radio Flux Modeling
4.5.3. Time-Scales for Precession in 3C 84: X-Ray Cavity Simulations
- The longer precession period is based on the X-ray observations of larger, kpc structures where cavities or bubbles can be resolved. These structures come from older times, when the supermassive black holes of the merging two galaxies were further apart from each other. The shorter precession period is related to the inner jet, which reflects the more recent activity. In the meantime, the two black holes could have approached significantly. Typical orbital decay time-scales from modelling are –10 yr for gas dynamical friction (e.g., [75]). The shortening of the precession period depends on the merging time-scale of the binary system of 3C 84.
- The X-ray cavities could be created only occassionally during epochs of increased intrinsic jet emission , which can be time-variable. The sparse ejection of rising bubbles, i.e., not during every precession period, would prolong the periodicity in case the precession period determination is based on the resolved pair of bubbles. In other words, smaller bubbles could be beyond the detection threshold, or more bubbles could be blended into an apparent larger one.
- Faster precession motion may be superposed on the slower motion. Faster precession on the time-scales of ∼100 yr could be driven by a secondary black hole, while the slower precession could be due to the warped disc on larger scales, which leads to the misalignment of angular momenta and the Lense-Thirring precession of either the inner portion of the disc and the black hole [76] or the precession of an outer disc [54], which can affect the jet kinematics depending on where it originates (Blandford-Znajek [77] or Blandford-Payne [78] process).
4.6. Implications for Cosmology
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Difmap Model-Fitting Parameters
References
- Nesterov, N.S.; Lyuty, V.M.; Valtaoja, E. Radio and optical evolution of the Seyfert galaxy NGC 1275. Astron. Astrophys. 1995, 296, 628–632. [Google Scholar]
- Bridges, T.J.; Irwin, J.A. Molecular gas in the Perseus cooling flow galaxy, NGC 1275. Mon. Not. R. Astron. Soc. 1998, 300, 967–976. [Google Scholar] [CrossRef] [Green Version]
- Punsly, B.; Marziani, P.; Bennert, V.N.; Nagai, H.; Gurwell, M.A. Revealing the Broad Line Region of NGC 1275: The Relationship to Jet Power. Astrophys. J. 2018, 869, 143. [Google Scholar] [CrossRef] [Green Version]
- Kino, M.; Wajima, K.; Kawakatu, N.; Nagai, H.; Orienti, M.; Giovannini, G.; Hada, K.; Niinuma, K.; Giroletti, M. Evidence of Jet-Clump Interaction: A Flip of the Radio Jet Head of 3C 84. Astrophys. J. 2018, 864, 118. [Google Scholar] [CrossRef]
- Hiura, K.; Nagai, H.; Kino, M.; Niinuma, K.; Sorai, K.; Chida, H.; Akiyama, K.; D’Ammando, F.; Giovannini, G.; Giroletti, M.; et al. VERA monitoring of the radio jet 3C 84 in the period of 2007-2013: Detection of non-linear motion. Publ. Astron. Soc. Jpn. 2018, 70, 83. [Google Scholar] [CrossRef]
- Hodgson, J.A.; Rani, B.; Lee, S.S.; Algaba, J.C.; Kino, M.; Trippe, S.; Park, J.H.; Zhao, G.Y.; Byun, D.Y.; Kang, S.; et al. KVN observations reveal multiple γ-ray emission regions in 3C 84? Mon. Not. R. Astron. Soc. 2018, 475, 368–378. [Google Scholar] [CrossRef]
- Jorstad, S.G.; Marscher, A.P.; Morozova, D.A.; Troitsky, I.S.; Agudo, I.; Casadio, C.; Foord, A.; Gómez, J.L.; MacDonald, N.R.; Molina, S.N.; et al. Kinematics of Parsec-scale Jets of Gamma-Ray Blazars at 43 GHz within the VLBA-BU-BLAZAR Program. Astrophys. J. 2017, 846, 98. [Google Scholar] [CrossRef]
- Lister, M.L.; Aller, M.F.; Aller, H.D.; Homan, D.C.; Kellermann, K.I.; Kovalev, Y.Y.; Pushkarev, A.B.; Richards, J.L.; Ros, E.; Savolainen, T. MOJAVE: XIII. Parsec-scale AGN Jet Kinematics Analysis Based on 19 years of VLBA Observations at 15 GHz. Astron. J. 2016, 152, 12. [Google Scholar] [CrossRef]
- Nagai, H.; Haga, T.; Giovannini, G.; Doi, A.; Orienti, M.; D’Ammando, F.; Kino, M.; Nakamura, M.; Asada, K.; Hada, K.; et al. Limb-brightened Jet of 3C 84 Revealed by the 43 GHz Very-Long-Baseline-Array Observation. Astrophys. J. 2014, 785, 53. [Google Scholar] [CrossRef]
- Pearson, T.J.; Readhead, A.C.S. The milli-arcsecond structure of a complete sample of radio sources. I. VLBI maps of seven sources. Astrophys. J. 1981, 248, 61–81. [Google Scholar] [CrossRef]
- Pauliny-Toth, I.I.K.; Preuss, E.; Witzel, A.; Graham, D.; Kellerman, K.I.; Ronnang, B. 6-cm VLBI observations of compact radio sources. Astron. J. 1981, 86, 371–385. [Google Scholar] [CrossRef]
- Walker, R.C.; Anantharamaiah, K.R. A VLBA Search for a Stimulated Recombination Line from the Accretion Region in NGC 1275. Astron. J. 2003, 125, 1756–1761. [Google Scholar] [CrossRef]
- Giovannini, G.; Savolainen, T.; Orienti, M.; Nakamura, M.; Nagai, H.; Kino, M.; Giroletti, M.; Hada, K.; Bruni, G.; Kovalev, Y.Y.; et al. A wide and collimated radio jet in 3C84 on the scale of a few hundred gravitational radii. Nat. Astron. 2018, 2, 472–477. [Google Scholar] [CrossRef] [Green Version]
- Nagai, H.; Suzuki, K.; Asada, K.; Kino, M.; Kameno, S.; Doi, A.; Inoue, M.; Kataoka, J.; Bach, U.; Hirota, T.; et al. VLBI Monitoring of 3C 84 (NGC 1275) in Early Phase of the 2005 Outburst. Publ. Astron. Soc. Japan 2010, 62, L11. [Google Scholar] [CrossRef]
- Suzuki, K.; Nagai, H.; Kino, M.; Kataoka, J.; Asada, K.; Doi, A.; Inoue, M.; Orienti, M.; Giovannini, G.; Giroletti, M.; et al. Exploring the Central Sub-parsec Region of the γ-Ray Bright Radio Galaxy 3C 84 with VLBA at 43 GHz in the Period of 2002–2008. Astrophys. J. 2012, 746, 140. [Google Scholar] [CrossRef]
- Madejski, G.G.; Sikora, M. Gamma-Ray Observations of Active Galactic Nuclei. Annu. Rev. Astron. Astrophys. 2016, 54, 725–760. [Google Scholar] [CrossRef]
- Rani, B. Radio Galaxies—The TeV Challenge. Galaxies 2019, 7, 23. [Google Scholar] [CrossRef]
- Rieger, F.; Levinson, A. Radio Galaxies at VHE Energies. Galaxies 2018, 6, 116. [Google Scholar] [CrossRef]
- Kadowaki, L.H.S.; de Gouveia Dal Pino, E.M.; Singh, C.B. The Role of Fast Magnetic Reconnection on the Radio and Gamma-ray Emission from the Nuclear Regions of Microquasars and Low Luminosity AGNs. Astrophys. J. 2015, 802, 113. [Google Scholar] [CrossRef]
- Britzen, S.; Fendt, C.; Eckart, A.; Karas, V. A new view on the M 87 jet origin: Turbulent loading leading to large-scale episodic wiggling. Astron. Astrophys. 2017, 601, A52. [Google Scholar] [CrossRef] [Green Version]
- Acciari, V.A.; Aliu, E.; Arlen, T.; Bautista, M.; Beilicke, M.; Benbow, W.; Bradbury, S.M.; Buckley, J.H.; Bugaev, V.; Butt, Y.; et al. Radio Imaging of the Very-High-Energy γ-Ray Emission Region in the Central Engine of a Radio Galaxy. Science 2009, 325, 444. [Google Scholar] [CrossRef]
- Abramowski, A.; Acero, F.; Aharonian, F.; Akhperjanian, A.G.; Anton, G.; Balzer, A.; Barnacka, A.; Barres de Almeida, U.; Becherini, Y.; Becker, J.; et al. The 2010 Very High Energy γ-Ray Flare and 10 Years of Multi-wavelength Observations of M 87. Astrophys. J. 2012, 746, 151. [Google Scholar] [CrossRef]
- Hada, K.; Giroletti, M.; Kino, M.; Giovannini, G.; D’Ammando, F.; Cheung, C.C.; Beilicke, M.; Nagai, H.; Doi, A.; Akiyama, K.; et al. A Strong Radio Brightening at the Jet Base of M 87 during the Elevated Very High Energy Gamma-Ray State in 2012. Astrophys. J. 2014, 788, 165. [Google Scholar] [CrossRef]
- Kadler, M.; Eisenacher, D.; Ros, E.; Mannheim, K.; Elsässer, D.; Bach, U. The blazar-like radio structure of the TeV source IC 310. Astron. Astrophys. 2012, 538, L1. [Google Scholar] [CrossRef] [Green Version]
- HESS Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A.G.; Andersson, T.; Angüner, E.O.; Arrieta, M.; Aubert, P.; et al. H.E.S.S. discovery of very high energy γ-ray emission from PKS 0625-354. Mon. Not. R. Astron. Soc. 2018, 476, 4187–4198. [Google Scholar] [CrossRef]
- Tavecchio, F.; Ghisellini, G. On the spine-layer scenario for the very high-energy emission of NGC 1275. Mon. Not. R. Astron. Soc. 2014, 443, 1224–1230. [Google Scholar] [CrossRef] [Green Version]
- De Angelis, A.; Mallamaci, M. Gamma-ray astrophysics. Eur. Phys. J. Plus 2018, 133, 324. [Google Scholar] [CrossRef]
- Sikora, M.; Madejski, G. Blazars; American Institute of Physics Conference Series; Aharonian, F.A., Völk, H.J., Eds.; American Institute: New York, NY, USA, 2001; Volume 558, pp. 275–288. [Google Scholar] [CrossRef]
- Aleksić, J.; Alvarez, E.A.; Antonelli, L.A.; Antoranz, P.; Asensio, M.; Backes, M.; Barres de Almeida, U.; Barrio, J.A.; Bastieri, D.; Becerra González, J.; et al. Detection of very-high energy γ-ray emission from <ASTROBJ>NGC 1275</ASTROBJ> by the MAGIC telescopes. Astron. Astrophys. 2012, 539, L2. [Google Scholar] [CrossRef]
- MAGIC Collaboration; Ansoldi, S.; Antonelli, L.A.; Arcaro, C.; Baack, D.; Babić, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J.A.; et al. Gamma-ray flaring activity of NGC1275 in 2016-2017 measured by MAGIC. Astron. Astrophys. 2018, 617, A91. [Google Scholar] [CrossRef]
- Strauss, M.A.; Huchra, J.P.; Davis, M.; Yahil, A.; Fisher, K.B.; Tonry, J. A Redshift Survey of IRAS Galaxies. VII. The Infrared and Redshift Data for the 1.936 Jansky Sample. Astrophys. J. Suppl. 1992, 83, 29. [Google Scholar] [CrossRef]
- Ade, P.A.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartlett, J.G.; Bartolo, N.; et al. Planck 2015 results-xiii. cosmological parameters. Astron. Astrophys. 2016, 594, A13. [Google Scholar]
- Shepherd, M.C. Difmap: An Interactive Program for Synthesis Imaging. Bull. Am. Astron. Soc. 1997, 125, 987–989. [Google Scholar]
- Efron, B. Bootstrap methods: Another look at the jackknife. Ann. Stat. 1979, 7, 1–26. [Google Scholar] [CrossRef]
- Pashchenko, I.N. Using the bootstrap to assess uncertainties of VLBI results—I. The method and image-based errors. Mon. Not. R. Astron. Soc. 2019, 482, 1955–1965. [Google Scholar] [CrossRef]
- Caproni, A.; Abraham, Z. Can long-term periodic variability and jet helicity in 3C 120 be explained by jet precession? Mon. Not. R. Astron. Soc. 2004, 349, 1218–1226. [Google Scholar] [CrossRef] [Green Version]
- Britzen, S.; Fendt, C.; Witzel, G.; Qian, S.J.; Pashchenko, I.N.; Kurtanidze, O.; Zajacek, M.; Martinez, G.; Karas, V.; Aller, M.; et al. OJ287: Deciphering the ‘Rosetta stone of blazars. Mon. Not. R. Astron. Soc. 2018, 478, 3199–3219. [Google Scholar] [CrossRef]
- Abraham, Z. Precession, beaming and the periodic light curve of OJ287. Astron. Astrophys. 2000, 355, 915–921. [Google Scholar]
- Abraham, Z. Beaming in Jets with Evolving Relativistic Features. Blazar Demogr. Phys. 2001, 227, 108. [Google Scholar]
- McCrea, W.H. Relativistic beaming. Mon. Not. R. Astron. Soc. 1972, 157, 359. [Google Scholar] [CrossRef]
- Blandford, R.D.; Königl, A. Relativistic jets as compact radio sources. Astrophys. J. 1979, 232, 34–48. [Google Scholar] [CrossRef]
- Fabian, A.C.; Sanders, J.S.; Allen, S.W.; Canning, R.E.A.; Churazov, E.; Crawford, C.S.; Forman, W.; Gabany, J.; Hlavacek-Larrondo, J.; Johnstone, R.M.; et al. A wide Chandra view of the core of the Perseus cluster. Mon. Not. R. Astron. Soc. 2011, 418, 2154–2164. [Google Scholar] [CrossRef]
- Dunn, R.J.H.; Fabian, A.C.; Sanders, J.S. Precession of the super-massive black hole in NGC 1275 (3C 84)? Mon. Not. R. Astron. Soc. 2006, 366, 758–766. [Google Scholar] [CrossRef] [Green Version]
- Levenberg, K. A method for the solution of certain problems in least squares. Quat. J. Appl. Math. 1944, 27, 164–168. [Google Scholar] [CrossRef]
- Marquardt, D.W. An Algorithm for Least-Squares Estimation of Nonlinear Parameters. J. Soc. Ind. Appl. Math. 1963, 11, 431–441. [Google Scholar] [CrossRef]
- Lister, M.L.; Cohen, M.H.; Homan, D.C.; Kadler, M.; Kellermann, K.I.; Kovalev, Y.Y.; Ros, E.; Savolainen, T.; Zensus, J.A. MOJAVE: Monitoring of Jets in Active Galactic Nuclei with VLBA Experiments. VI. Kinematics Analysis of a Complete Sample of Blazar Jets. Astron. J. 2009, 138, 1874–1892. [Google Scholar] [CrossRef]
- Britzen, S.; Fendt, C.; Böttcher, M.; et al. Astron. Astrophys. 2019. submitted.
- Edelson, R.A.; Krolik, J.H. The Discrete Correlation Function: A New Method for Analyzing Unevenly Sampled Variability Data. Astrophys. J. 1988, 333, 646. [Google Scholar] [CrossRef]
- Emmanoulopoulos, D.; McHardy, I.M.; Papadakis, I.E. Generating artificial light curves: revisited and updated. Mon. Not. R. Astron. Soc. 2013, 433, 907–927. [Google Scholar] [CrossRef] [Green Version]
- Rasmussen, C.E.; Williams, C.K.I. Gaussian Processes for Machine Learning; MIT Press: Cambridge, MA, USA, 2006. [Google Scholar]
- Foreman-Mackey, D.; Hogg, D.W.; Lang, D.; Goodman, J. emcee: The MCMC Hammer. Publ. Astron. Soc. Pac. 2013. [Google Scholar] [CrossRef]
- Ambikasaran, S.; Foreman-Mackey, D.; Greengard, L.; Hogg, D.W.; O’Neil, M. Fast Direct Methods for Gaussian Processes. IEEE Trans. Pattern Anal. Mach. Intell. 2015. [Google Scholar] [CrossRef]
- Mattox, J.R.; Bertsch, D.L.; Chiang, J.; Dingus, B.L.; Digel, S.W.; Esposito, J.A.; Fierro, J.M.; Hartman, R.C.; Hunter, S.D.; Kanbach, G.; et al. The Likelihood Analysis of EGRET Data. Astrophys. J. 1996, 461, 396. [Google Scholar] [CrossRef]
- Falceta-Gonçalves, D.; Caproni, A.; Abraham, Z.; Teixeira, D.M.; de Gouveia Dal Pino, E.M. Precessing Jets and X-ray Bubbles from NGC 1275 (3C 84) in the Perseus Galaxy Cluster: A View from Three-dimensional Numerical Simulations. Astrophys. J. Lett. 2010, 713, L74–L78. [Google Scholar] [CrossRef]
- Tanada, K.; Kataoka, J.; Arimoto, M.; Akita, M.; Cheung, C.C.; Digel, S.W.; Fukazawa, Y. The Origins of the Gamma-Ray Flux Variations of NGC 1275 Based on Eight Years of Fermi-LAT Observations. Astrophys. J. 2018, 860, 74. [Google Scholar] [CrossRef] [Green Version]
- Asada, K.; Kameno, S.; Shen, Z.Q.; Horiuchi, S.; Gabuzda, D.C.; Inoue, M. The Expanding Radio Lobe of 3C 84 Revealed by VSOP Observations. Publ. Astron. Soc. Japan 2006, 58, 261–270. [Google Scholar] [CrossRef] [Green Version]
- Katz, J.I. A Precessing Disk in OJ 287? Astrophys. J. 1997, 478, 527–529. [Google Scholar] [CrossRef]
- Pringle, J.E. Self-induced warping of accretion discs: non-linear evolution and application to AGN. Mon. Not. R. Astron. Soc. 1997, 292, 136–147. [Google Scholar] [CrossRef] [Green Version]
- Minkowski, R. Optical Investigations of Radio Sources (Introductory Lecture); van de Hulst, H.C., Ed.; Radio astronomy; Cambridge University Press: Cambridge, UK, 1957; Volume 4, p. 107. [Google Scholar]
- Kent, S.M.; Sargent, W.L.W. Ionization and excitation mechanisms in the filaments around NGC 1275. Astrophys. J. 1979, 230, 667–680. [Google Scholar] [CrossRef]
- Donahue, M.; Trauger, J. STScI-2003-14. 2003. [Google Scholar]
- Liu, F.K.; Chen, X. Evolution of Supermassive Black Hole Binaries and Acceleration of Jet Precession in Galactic Nuclei. Astrophys. J. 2007, 671, 1272–1283. [Google Scholar] [CrossRef] [Green Version]
- Dutson, K.L.; Edge, A.C.; Hinton, J.A.; Hogan, M.T.; Gurwell, M.A.; Alston, W.N. A non-thermal study of the brightest cluster galaxy NGC 1275—the Gamma-Radio connection over four decades. Mon. Not. R. Astron. Soc. 2014, 442, 2048–2057. [Google Scholar] [CrossRef]
- Marscher, A.P.; Gear, W.K. Models for high-frequency radio outbursts in extragalactic sources, with application to the early 1983 millimeter-to-infrared flare of 3C 273. Astrophys. J. 1985, 298, 114–127. [Google Scholar] [CrossRef]
- Fuhrmann, L.; Larsson, S.; Chiang, J.; Angelakis, E.; Zensus, J.A.; Nestoras, I.; Krichbaum, T.Â.P.; Ungerechts, H.; Sievers, A.; Pavlidou, V.; et al. Detection of significant cm to sub-mm band radio and γ-ray correlated variability in Fermi bright blazars. Mon. Not. R. Astron. Soc. 2014, 441, 1899–1909. [Google Scholar] [CrossRef] [Green Version]
- Ramakrishnan, V.; Hovatta, T.; Nieppola, E.; Tornikoski, M.; Lähteenmäki, A.; Valtaoja, E. Locating the γ-ray emission site in Fermi/LAT blazars from correlation analysis between 37 GHz radio and γ-ray light curves. Mon. Not. R. Astron. Soc. 2015, 452, 1280–1294. [Google Scholar] [CrossRef]
- Max-Moerbeck, W.; Hovatta, T.; Richards, J.L.; King, O.G.; Pearson, T.J.; Readhead, A.C.S.; Reeves, R.; Shepherd, M.C.; Stevenson, M.A.; Angelakis, E.; et al. Time correlation between the radio and gamma-ray activity in blazars and the production site of the gamma-ray emission. Mon. Not. R. Astron. Soc. 2014, 445, 428–436. [Google Scholar] [CrossRef] [Green Version]
- Abdo, A.A.; Ackermann, M.; Ajello, M.; Asano, K.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Baughman, B.M.; Bechtol, K.; et al. Fermi Discovery of Gamma-ray Emission from NGC 1275. Astrophys. J. 2009, 699, 31–39. [Google Scholar] [CrossRef]
- Fukazawa, Y.; Shiki, K.; Tanaka, Y.; Itoh, R.; Takahashi, H.; Imazato, F.; D’Ammando, F.; Ojha, R.; Nagai, H. X-Ray and GeV Gamma-Ray Variability of the Radio Galaxy NGC 1275. Astrophys. J. 2018, 855, 93. [Google Scholar] [CrossRef]
- Aleksić, J.; Ansoldi, S.; Antonelli, L.A.; Antoranz, P.; Babic, A.; Bangale, P.; Barres de Almeida, U.; Barrio, J.A.; Becerra González, J.; Bednarek, W.; et al. Contemporaneous observations of the radio galaxy NGC 1275 from radio to very high energy γ-rays. Astron. Astrophys. 2014, 564, A5. [Google Scholar] [CrossRef]
- Benbow, W.; VERITAS Collaboration. Highlights from the VERITAS AGN Observation Program. In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands, 30 July–6 August 2015; Volume 34, p. 821. [Google Scholar]
- Ahnen, M.L.; Ansoldi, S.; Antonelli, L.A.; Antoranz, P.; Babic, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J.A.; Becerra González, J.; et al. Deep observation of the NGC 1275 region with MAGIC: search of diffuse γ-ray emission from cosmic rays in the Perseus cluster. Astron. Astrophys. 2016, 589, A33. [Google Scholar] [CrossRef]
- Acciari, V.A.; Ansoldi, S.; Antonelli, L.A.; Arbet Engels, A.; Arcaro, C.; Baack, D.; Babić, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; et al. Constraining dark matter lifetime with a deep gamma-ray survey of the Perseus galaxy cluster with MAGIC. Phys. Dark Univ. 2018, 22, 38–47. [Google Scholar] [CrossRef] [Green Version]
- Sanders, J.S.; Fabian, A.C. Hard X-ray emission from the core of the Perseus cluster and the thermal content of the radio bubbles. In Heating Versus Cooling in Galaxies and Clusters of Galaxies; Böhringer, H., Pratt, G.W., Finoguenov, A., Schuecker, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; p. 74. [Google Scholar] [CrossRef]
- Dosopoulou, F.; Antonini, F. Dynamical Friction and the Evolution of Supermassive Black Hole Binaries: The Final Hundred-parsec Problem. Astrophys. J. 2017, 840, 31. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.F. α-Disks and the precession of extragalactic jets. Acta Astrophys. Sin. 1992, 12, 9. [Google Scholar] [CrossRef]
- Blandford, R.D.; Znajek, R.L. Electromagnetic extraction of energy from Kerr black holes. Mon. Not. R. Astron. Soc. 1977, 179, 433–456. [Google Scholar] [CrossRef]
- Blandford, R.D.; Payne, D.G. Hydromagnetic flows from accretion disks and the production of radio jets. Mon. Not. R. Astron. Soc. 1982, 199, 883–903. [Google Scholar] [CrossRef]
- Naab, T.; Ostriker, J.P. Theoretical Challenges in Galaxy Formation. Annu. Rev. Astron. Astrophys. 2017, 55, 59–109. [Google Scholar] [CrossRef]
- Begelman, M.C.; Blandford, R.D.; Rees, M.J. Massive black hole binaries in active galactic nuclei. Nature 1980, 287, 307–309. [Google Scholar] [CrossRef]
- Merritt, D.; Milosavljević, M. Massive Black Hole Binary Evolution. Liv. Rev. Relat. 2005, 8, 8. [Google Scholar] [CrossRef]
- Komossa, S.; Burwitz, V.; Hasinger, G.; Predehl, P.; Kaastra, J.S.; Ikebe, Y. Discovery of a Binary Active Galactic Nucleus in the Ultraluminous Infrared Galaxy NGC 6240 Using Chandra. Astrophys. J. Lett. 2003, 582, L15–L19. [Google Scholar] [CrossRef]
- Kun, E.; Gabányi, K.É.; Karouzos, M.; Britzen, S.; Gergely, L.Á. A spinning supermassive black hole binary model consistent with VLBI observations of the S5 1928+738 jet. Mon. Not. R. Astron. Soc. 2014, 445, 1370–1382. [Google Scholar] [CrossRef]
- Qian, S.J.; Kudryavtseva, N.A.; Britzen, S.; Krichbaum, T.P.; Gao, L.; Witzel, A.; Zensus, J.A.; Aller, M.F.; Aller, H.D.; Zhang, X.Z. A Possible Periodicity in the Radio Light Curves of 3C 454.3. Chin. J. Astron. Astrophys. 2007, 7, 364–374. [Google Scholar] [CrossRef] [Green Version]
- Caproni, A.; Abraham, Z.; Motter, J.C.; Monteiro, H. Jet Precession Driven by a Supermassive Black Hole Binary System in the BL Lac Object PG 1553+113. Astrophys. J. Lett. 2017, 851, L39. [Google Scholar] [CrossRef] [Green Version]
- Treister, E.; Schawinski, K.; Urry, C.M.; Simmons, B.D. Major Galaxy Mergers Only Trigger the Most Luminous Active Galactic Nuclei. Astrophys. J. Lett. 2012, 758, L39. [Google Scholar] [CrossRef]
- Ramos Almeida, C.; Tadhunter, C.N.; Inskip, K.J.; Morganti, R.; Holt, J.; Dicken, D. The optical morphologies of the 2 Jy sample of radio galaxies: evidence for galaxy interactions. Mon. Not. R. Astron. Soc. 2011, 410, 1550–1576. [Google Scholar] [CrossRef]
- Chiaberge, M.; Gilli, R.; Lotz, J.M.; Norman, C. Radio Loud AGNs are Mergers. Astrophys. J. 2015, 806, 147. [Google Scholar] [CrossRef]
- Richards, J.L.; Max-Moerbeck, W.; Pavlidou, V.; King, O.G.; Pearson, T.J.; Readhead, A.C.S.; Reeves, R.; Shepherd, M.C.; Stevenson, M.A.; Weintraub, L.C.; et al. Blazars in the Fermi Era: The OVRO 40 m Telescope Monitoring Program. Astrophys. J. Suppl. 2011, 194, 29. [Google Scholar] [CrossRef]
- Lister, M.L.; Aller, M.F.; Aller, H.D.; Hodge, M.A.; Homan, D.C.; Kovalev, Y.Y.; Pushkarev, A.B.; Savolainen, T. MOJAVE. XV. VLBA 15 GHz Total Intensity and Polarization Maps of 437 Parsec-scale AGN Jets from 1996 to 2017. Astrophys. J. Suppl. 2018, 234, 12. [Google Scholar] [CrossRef]
1. | |
2. | |
3. | available from the Fermi-LAT data server at https://fermi.gsfc.nasa.gov/ssc/data/access/. |
4. |
Parameter | Notation | Initial Bounds | Pprec ≃ 88 yr | Pprec ≃ 44 yr |
---|---|---|---|---|
Intrinsic jet flux density | ||||
Exponent of Doppler boosting | ||||
Reference epoch | ||||
Precession period | ||||
Lorentz factor | ||||
Half-opening angle of the precession cone | ||||
Viewing angle of the precession axis | ||||
Position angle of the precession axis |
Parameter | Notation | Initial Bounds | Fitted Value |
---|---|---|---|
Intrinsic jet flux density | |||
Exponent of Doppler boosting | |||
Reference epoch | |||
Precession period | |||
Lorentz factor | |||
Half-opening angle of the precession cone | |||
Viewing angle of the precession axis | |||
Position angle of the precession axis |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Britzen, S.; Fendt, C.; Zajaček, M.; Jaron, F.; Pashchenko, I.; Aller, M.F.; Aller, H.D. 3C 84: Observational Evidence for Precession and a Possible Relation to TeV Emission. Galaxies 2019, 7, 72. https://doi.org/10.3390/galaxies7030072
Britzen S, Fendt C, Zajaček M, Jaron F, Pashchenko I, Aller MF, Aller HD. 3C 84: Observational Evidence for Precession and a Possible Relation to TeV Emission. Galaxies. 2019; 7(3):72. https://doi.org/10.3390/galaxies7030072
Chicago/Turabian StyleBritzen, Silke, Christian Fendt, Michal Zajaček, Frédéric Jaron, Ilya Pashchenko, Margo F. Aller, and Hugh D. Aller. 2019. "3C 84: Observational Evidence for Precession and a Possible Relation to TeV Emission" Galaxies 7, no. 3: 72. https://doi.org/10.3390/galaxies7030072
APA StyleBritzen, S., Fendt, C., Zajaček, M., Jaron, F., Pashchenko, I., Aller, M. F., & Aller, H. D. (2019). 3C 84: Observational Evidence for Precession and a Possible Relation to TeV Emission. Galaxies, 7(3), 72. https://doi.org/10.3390/galaxies7030072