Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = OsmiR535

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 5560 KiB  
Article
MicroRNA164 Regulates Perennial Ryegrass (Lolium perenne L.) Adaptation to Changing Light Intensity
by Liyun Zhang, Xin Huang, Yanrong Liu, Ning Ma, Dayong Li, Qiannan Hu, Wanjun Zhang and Kehua Wang
Agronomy 2024, 14(6), 1142; https://doi.org/10.3390/agronomy14061142 - 27 May 2024
Cited by 1 | Viewed by 1354
Abstract
Plants especially need to adapt to all different light environments (shade, high light, etc.) due to the essential role of light in plant life. Either shade or high-light microenvironmental conditions are common for cool-season turfgrasses, such as perennial ryegrass (Lolium perenne L.). [...] Read more.
Plants especially need to adapt to all different light environments (shade, high light, etc.) due to the essential role of light in plant life. Either shade or high-light microenvironmental conditions are common for cool-season turfgrasses, such as perennial ryegrass (Lolium perenne L.). In order to study how a plant highly conserves microRNA, miR164-affected perennial ryegrass were studied under different light intensities. OsmiR164a-overexpression (OE164), target mimicry OsmiR164a (MIM164), and CRES-T (chimeric repressor gene-silencing technology) OsNAC60 (NAC60) transgenic plants and wild-type (WT) plants were evaluated in both field (shade and full sun) and growth chamber conditions (low, medium, and high PAR at 100, 400, and 1200 µmol s−1 m−2). Morphological and physiological analysis showed miR164 could fine-tune perennial ryegrass adaptation to changing light intensity, possibly via the regulation of target genes, such as NAC60. Overall, OE164 and NAC60 plants were similar to each other and more sensitive to high light, particularly under the field condition, demonstrated by smaller size and much poorer grass quality; MIM164 performed more like WT plants than either the OE164 or NAC60 plants. This study indicates the potential of genetic manipulation of miR164 and/or its targeted genes for turfgrass adaptation to changing light environments, and future research to further investigate the molecular mechanism beneath would be warranted. Full article
(This article belongs to the Special Issue Advances in Stress Biology of Forage and Turfgrass)
Show Figures

Figure 1

14 pages, 9901 KiB  
Article
MicroRNA164 Affects Plant Responses to UV Radiation in Perennial Ryegrass
by Chang Xu, Xin Huang, Ning Ma, Yanrong Liu, Aijiao Xu, Xunzhong Zhang, Dayong Li, Yue Li, Wanjun Zhang and Kehua Wang
Plants 2024, 13(9), 1242; https://doi.org/10.3390/plants13091242 - 30 Apr 2024
Cited by 2 | Viewed by 1720
Abstract
Increasing the ultraviolet radiation (UV) level, particularly UV-B due to damage to the stratospheric ozone layer by human activities, has huge negative effects on plant and animal metabolism. As a widely grown cool-season forage grass and turfgrass in the world, perennial ryegrass ( [...] Read more.
Increasing the ultraviolet radiation (UV) level, particularly UV-B due to damage to the stratospheric ozone layer by human activities, has huge negative effects on plant and animal metabolism. As a widely grown cool-season forage grass and turfgrass in the world, perennial ryegrass (Lolium perenne) is UV-B-sensitive. To study the effects of miR164, a highly conserved microRNA in plants, on perennial ryegrass under UV stress, both OsmiR164a overexpression (OE164) and target mimicry (MIM164) transgenic perennial ryegrass plants were generated using agrobacterium-mediated transformation, and UV-B treatment (~600 μw cm−2) of 7 days was imposed. Morphological and physiological analysis showed that the miR164 gene affected perennial ryegrass UV tolerance negatively, demonstrated by the more scorching leaves, higher leaf electrolyte leakage, and lower relative water content in OE164 than the WT and MIM164 plants after UV stress. The increased UV sensitivity could be partially due to the reduction in antioxidative capacity and the accumulation of anthocyanins. This study indicated the potential of targeting miR164 and/or its targeted genes for the genetic manipulation of UV responses in forage grasses/turfgrasses; further research to reveal the molecular mechanism underlying how miR164 affects plant UV responses is needed. Full article
(This article belongs to the Topic Plant Responses to Environmental Stress)
Show Figures

Figure 1

14 pages, 5346 KiB  
Article
OsMYB58 Negatively Regulates Plant Growth and Development by Regulating Phosphate Homeostasis
by Dongwon Baek, Soyeon Hong, Hye Jeong Kim, Sunok Moon, Ki Hong Jung, Won Tae Yang and Doh Hoon Kim
Int. J. Mol. Sci. 2024, 25(4), 2209; https://doi.org/10.3390/ijms25042209 - 12 Feb 2024
Cited by 5 | Viewed by 2007
Abstract
Phosphate (Pi) starvation is a critical factor limiting crop growth, development, and productivity. Rice (Oryza sativa) R2R3-MYB transcription factors function in the transcriptional regulation of plant responses to various abiotic stresses and micronutrient deprivation, but little is known about their roles [...] Read more.
Phosphate (Pi) starvation is a critical factor limiting crop growth, development, and productivity. Rice (Oryza sativa) R2R3-MYB transcription factors function in the transcriptional regulation of plant responses to various abiotic stresses and micronutrient deprivation, but little is known about their roles in Pi starvation signaling and Pi homeostasis. Here, we identified the R2R3-MYB transcription factor gene OsMYB58, which shares high sequence similarity with AtMYB58. OsMYB58 expression was induced more strongly by Pi starvation than by other micronutrient deficiencies. Overexpressing OsMYB58 in Arabidopsis thaliana and rice inhibited plant growth and development under Pi-deficient conditions. In addition, the overexpression of OsMYB58 in plants exposed to Pi deficiency strongly affected root development, including seminal root, lateral root, and root hair formation. Overexpressing OsMYB58 strongly decreased the expression of the rice microRNAs OsmiR399a and OsmiR399j. By contrast, overexpressing OsMYB58 strongly increased the expression of rice PHOSPHATE 2 (OsPHO2), whose expression is repressed by miR399 during Pi starvation signaling. OsMYB58 functions as a transcriptional repressor of the expression of its target genes, as determined by a transcriptional activity assay. These results demonstrate that OsMYB58 negatively regulates OsmiR399-dependent Pi starvation signaling by enhancing OsmiR399s expression. Full article
(This article belongs to the Special Issue Crop Stress Biology and Molecular Breeding 3.0)
Show Figures

Figure 1

13 pages, 3749 KiB  
Article
OsmiRNA5488 Regulates the Development of Embryo Sacs and Targets OsARF25 in Rice (Oryza sativa L.)
by Shengyuan Guo, Chuanjiang Zheng, Yan Wang, Yangwen Xu, Jinwen Wu, Lan Wang, Xiangdong Liu and Zhixiong Chen
Int. J. Mol. Sci. 2023, 24(22), 16240; https://doi.org/10.3390/ijms242216240 - 13 Nov 2023
Cited by 3 | Viewed by 1942
Abstract
Small RNAs are a class of non-coding RNAs that typically range from 20 to 24 nucleotides in length. Among them, microRNAs (miRNAs) are particularly important regulators for plant development. The biological function of the conserved miRNAs has been studied extensively in plants, while [...] Read more.
Small RNAs are a class of non-coding RNAs that typically range from 20 to 24 nucleotides in length. Among them, microRNAs (miRNAs) are particularly important regulators for plant development. The biological function of the conserved miRNAs has been studied extensively in plants, while that of the species-specific miRNAs has been studied in-depth. In this study, the regulatory role of a rice-specific OsmiRNA5488 (OsmiR5488) was characterized with the miR5488-overexpressed line (miR5488-OE) and miR5488-silenced line (STTM-5488). The seed-setting rate was notably reduced in miR5488-OE lines, but not in STTM-5488 lines. Cytological observation demonstrated the different types of abnormal mature embryo sacs, including the degeneration of embryo sacs and other variant types, in miR5488-OE lines. The percentage of the abnormal mature embryo sacs accounted for the reduced value of the seed-setting rate. Furthermore, OsARF25 was identified as a target of OsmiR5488 via RNA ligase-mediated 3′-amplifification of cDNA ends, dual luciferase assays, and transient expression assays. The primary root length was decreased with the increases in auxin concentrations in miR5488-OE lines compared to wild-type rice. Summarily, our results suggested that OsmiR5488 regulates the seed-setting rate and down-regulates the targeted gene OsARF25. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

16 pages, 3191 KiB  
Article
The Role of ptsH in Stress Adaptation and Virulence in Cronobacter sakazakii BAA-894
by Yi Sun, Jiahui Li, Yanpeng Yang, Gaoji Yang, Yiqi Shi, Shuo Wang, Muxue Wang and Xiaodong Xia
Foods 2022, 11(17), 2680; https://doi.org/10.3390/foods11172680 - 2 Sep 2022
Cited by 9 | Viewed by 2425
Abstract
Cronobacter sakazakii, an emerging foodborne pathogen that was isolated primarily from powdered infant formula, poses an important issue in food safety due to its high stress tolerance and pathogenicity. The Hpr (encoded by ptsH gene) has been shown to regulate carbon metabolism [...] Read more.
Cronobacter sakazakii, an emerging foodborne pathogen that was isolated primarily from powdered infant formula, poses an important issue in food safety due to its high stress tolerance and pathogenicity. The Hpr (encoded by ptsH gene) has been shown to regulate carbon metabolism as well as stress response and virulence. However, the functional properties of ptsH in C. sakzakii have not been investigated. In this study, we clarified the role of ptsH in the C. sakzakii stress response and virulence, and explored its possible regulatory mechanism by RNA-seq. Compared with wild-type, the ΔptsH mutant showed a slower growth rate in the log phase but no difference in the stationary phase. Moreover, the resistance to heat stress (65 °C, 55 °C), simulated gastric fluid (pH = 2.5), biofilm formation and adhesion to HT-29 cells of ΔptsH mutant were significantly decreased, whereas the oxidative resistance (1, 5, 10 mM H2O2), osmotic resistance (10%, 15%, 20% NaCl), and superoxide dismutase activity were enhanced. Finally, RNA-seq analysis revealed the sulfur metabolism pathway is significantly upregulated in the ΔptsH mutant, but the bacterial secretion system pathway is dramatically downregulated. The qRT-PCR assay further demonstrated that the ΔptsH mutant has elevated levels of genes that are related to oxidative and osmotic stress (sodA, rpoS, cpxA/R, osmY). This study provides a great understanding of the role of ptsH in diverse stress responses and virulence in C. sakazakii, and it contributes to our understanding of the genetic determinant of stress resistance and pathogenicity of this important foodborne pathogen. Full article
(This article belongs to the Special Issue Foodborne Pathogenic Bacteria: Prevalence and Control)
Show Figures

Figure 1

13 pages, 2627 KiB  
Article
Ectopic Expression of Os-miR408 Improves Thermo-Tolerance of Perennial Ryegrass
by Geli Taier, Nan Hang, Tianran Shi, Yanrong Liu, Wenxin Ye, Wanjun Zhang and Kehua Wang
Agronomy 2021, 11(10), 1930; https://doi.org/10.3390/agronomy11101930 - 26 Sep 2021
Cited by 12 | Viewed by 3154
Abstract
With global warming, high temperature stress has become a main threat to the growth of cool-season turfgrasses, including perennial ryegrass. As one of the conserved plant microRNA families, miR408s are known to play roles in various abiotic stresses, including cold, drought, salinity, and [...] Read more.
With global warming, high temperature stress has become a main threat to the growth of cool-season turfgrasses, including perennial ryegrass. As one of the conserved plant microRNA families, miR408s are known to play roles in various abiotic stresses, including cold, drought, salinity, and oxidative stress, but no report, thus far, was found for heat. Here, perennial ryegrass plants overexpressing rice Os-miR408 were used to investigate the role of miR408 in plant heat tolerance. Both wild type (WT) and miR408 transgenic perennial ryegrass plants (TG) were subjected to short-term heat stress at 38 °C for 72 h (experiment 1) or at 42 °C for 48 h (experiment 2), and then let recover for 7 days at optimum temperature. Morphological changes and physiological parameters, including antioxidative responses of TG and WT plants, were compared. The results showed that miR408 downregulated the expression of two putative target genes, PLASTOCYANIN and LAC3. Additionally, overexpression of Os-miR408 improved thermo-tolerance of perennial ryegrass, demonstrated by lower leaf lipid peroxidation and electrolyte leakage, and higher relative water content after both 38 and 42 °C heat stresses. In addition, the enhanced thermotolerance of TG plants could be associated with its morphological changes (e.g., narrower leaves, smaller tiller angles) and elevated antioxidative capacity. This study is the first that experimentally reported a positive role of miR408 in plant tolerance to heat stress, which provided useful information for further understanding the mechanism by which miR408 improved plant high-temperature tolerance, and offered a potential genetic resource for breeding heat-resistant cool-season turfgrass in the future. Full article
(This article belongs to the Special Issue Recent Advances in Turfgrass Responses to Abiotic and Biotic Stresses)
Show Figures

Figure 1

14 pages, 3396 KiB  
Article
Efficiency of Recombinant CRISPR/rCas9-Mediated miRNA Gene Editing in Rice
by Pil Joong Chung, Hoyong Chung, Nuri Oh, Joohee Choi, Seung Woon Bang, Se Eun Jung, Harin Jung, Jae Sung Shim and Ju-Kon Kim
Int. J. Mol. Sci. 2020, 21(24), 9606; https://doi.org/10.3390/ijms21249606 - 16 Dec 2020
Cited by 34 | Viewed by 4776
Abstract
Drought is one of the major environmental stresses adversely affecting crop productivity worldwide. Precise characterization of genes involved in drought response is necessary to develop new crop varieties with enhanced drought tolerance. Previously, we identified 66 drought-induced miRNAs in rice plants. For the [...] Read more.
Drought is one of the major environmental stresses adversely affecting crop productivity worldwide. Precise characterization of genes involved in drought response is necessary to develop new crop varieties with enhanced drought tolerance. Previously, we identified 66 drought-induced miRNAs in rice plants. For the further functional investigation of the miRNAs, we applied recombinant codon-optimized Cas9 (rCas9) for rice with single-guide RNAs specifically targeting mature miRNA sequences or sites required for the biogenesis of mature miRNA. A total of 458 T0 transgenic plants were analyzed to determine the frequency and type of mutations induced by CRISPR/rCas9 on 13 independent target miRNAs. The average mutation frequency for 13 genes targeted by single guide RNAs (sgRNAs) in T0 generation was 59.4%, including mono-allelic (8.54%), bi-allelic (11.1%), and hetero-allelic combination (39.7%) mutations. The mutation frequency showed a positive correlation with Tm temperature of sgRNAs. For base insertion, one base insertion (99%) was predominantly detected in transgenic plants. Similarly, one base deletion accounted for the highest percentage, but there was also a significant percentage of cases in which more than one base was deleted. The deletion of more than two bases in OsmiR171f and OsmiR818b significantly reduced the level of corresponding mature miRNAs. Further functional analysis using CRISPR/Cas9-mediated mutagenesis confirmed that OsmiR818b is involved in drought response in rice plants. Overall, this study suggests that the CRISPR/rCas9 system is a powerful tool for loss-of-function analysis of miRNA in rice. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

9 pages, 2092 KiB  
Communication
OsmiR535, a Potential Genetic Editing Target for Drought and Salinity Stress Tolerance in Oryza sativa
by Erkui Yue, Huan Cao and Bohan Liu
Plants 2020, 9(10), 1337; https://doi.org/10.3390/plants9101337 - 10 Oct 2020
Cited by 130 | Viewed by 5777
Abstract
OsmiR535 belongs to the miR156/miR529/miR535 superfamily, a highly conserved miRNA family in plants. OsmiR535 is involved in regulating the cold-stress response, modulating plant development, and determining panicle architecture and grain length. However, the role that OsmiR535 plays in plant responses to drought and [...] Read more.
OsmiR535 belongs to the miR156/miR529/miR535 superfamily, a highly conserved miRNA family in plants. OsmiR535 is involved in regulating the cold-stress response, modulating plant development, and determining panicle architecture and grain length. However, the role that OsmiR535 plays in plant responses to drought and salinity are elusive. In the current study, molecular and genetic engineering techniques were used to elucidate the possible role of OsmiR535 in response to NaCl, PEG(Poly ethylene glycol), ABA(Abscisic acid), and dehydration stresses. Our results showed that OsmiR535 is induced under stressed conditions as compared to control. With transgenic and CRISPR/Cas9 knockout system techniques, our results verified that either inhibition or knockout of OsmiR535 in rice could enhance the tolerance of plants to NaCl, ABA, dehydration and PEG stresses. In addition, the overexpression of OsmiR535 significantly reduced the survival rate of rice seedlings during PEG and dehydration post-stress recovery. Our results demonstrated that OsmiR535 negatively regulates the stress response in rice. Moreover, our practical application of CRISPR/Cas9 mediated genome editing created a homozygous 5 bp deletion in the coding sequence of OsmiR535, demonstrating that OsmiR535 could be a useful genetic editing target for drought and salinity tolerance and a new marker for molecular breeding of Oryza sativa. Full article
(This article belongs to the Special Issue Abiotic Stress Tolerance in Crop and Medical Plants)
Show Figures

Figure 1

Back to TopTop