Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Occidental pear

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2148 KB  
Article
Rapid Determination of Different Ripening Stages of Occidental Pears (Pyrus communis L.) by Volatile Organic Compounds Using Proton-Transfer-Reaction Mass Spectrometry (PTR-MS)
by Yuanmo Wang, Qingzhen Zhu, Songzhong Liu, Leizi Jiao and Daming Dong
Foods 2024, 13(4), 620; https://doi.org/10.3390/foods13040620 - 19 Feb 2024
Cited by 7 | Viewed by 2718
Abstract
Determination of Occidental pear (Pyrus communis) ripening is difficult because the appearance of Occidental pears does not change significantly during the ripening process. Occidental pears at different ripening stages release different volatile organic compounds (VOCs), which can be used to determine [...] Read more.
Determination of Occidental pear (Pyrus communis) ripening is difficult because the appearance of Occidental pears does not change significantly during the ripening process. Occidental pears at different ripening stages release different volatile organic compounds (VOCs), which can be used to determine fruit ripeness non-destructively and rapidly. In this study, VOCs were detected using proton-transfer-reaction mass spectrometry (PTR-MS). Notably, data were acquired within 1 min. Occidental pears harvested at five separate times were divided into three ripening stages: unripe, ripe, and overripe. The results showed that the composition of VOCs differed depending on the ripening stage. In particular, the concentrations of esters and terpenes significantly increased during the overripe stage. Three ripening stages were clearly discriminated by heatmap clustering and principal component analysis (PCA). This study provided a rapid and non-destructive method to evaluate the ripening stages of Occidental pears. The result can help fruit farmers to decide the optimum harvest time and hence reduce their economic losses. Full article
Show Figures

Figure 1

14 pages, 3343 KB  
Article
Genome-Wide Identification and Analysis of High-Copy-Number LTR Retrotransposons in Asian Pears
by Shuang Jiang, Xiaoqing Wang, Chunhui Shi and Jun Luo
Genes 2019, 10(2), 156; https://doi.org/10.3390/genes10020156 - 18 Feb 2019
Cited by 4 | Viewed by 3735
Abstract
A large proportion of the genome of ‘Suli’ pear (Pyrus pyrifolia) contains long terminal repeat retrotransposons (LTR-RTs), which suggests that LTR-RTs have played important roles in the evolution of Pyrus. Further analysis of retrotransposons, particularly of high-copy-number LTR-RTs in different [...] Read more.
A large proportion of the genome of ‘Suli’ pear (Pyrus pyrifolia) contains long terminal repeat retrotransposons (LTR-RTs), which suggests that LTR-RTs have played important roles in the evolution of Pyrus. Further analysis of retrotransposons, particularly of high-copy-number LTR-RTs in different species, will provide new insights into the evolutionary history of Pyrus. A total of 4912 putative LTR-RTs classified into 198 subfamilies were identified in the ‘Suli’ pear genome. Six Asian pear accessions, including cultivars and wild species, were resequenced. The comparison of copy number for each LTR-RT subfamily was evaluated in Pyrus accessions, and data showed up to four-fold differences for some subfamilies. This contrast suggests different fates for retrotransposon families in the evolution of Pyrus. Fourteen high-copy-number subfamilies were identified in Asian pears, and more than 50% of the LTR-RTs in the genomes of all Pyrus accessions were from these 14 identified LTR-RT subfamilies. Their average insertion time was 3.42 million years ago, which suggests that these subfamilies were recently inserted into the genome. Many homologous and specific retrotransposon insertion sites were identified in oriental and occidental pears, suggesting that the duplication of retrotransposons has occurred throughout almost the entire origin and evolution of Pyrus species. The LTR-RTs show high heterogeneity, and their copy numbers vary in different Pyrus species. Thus, our findings suggest that LTR-RTs are an important source of genetic variation among Pyrus species. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

Back to TopTop