Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = O-alkyl derivative of naringenin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2728 KiB  
Article
Ether Derivatives of Naringenin and Their Oximes as Factors Modulating Bacterial Adhesion
by Anna Duda-Madej, Joanna Kozłowska, Dagmara Baczyńska and Paweł Krzyżek
Antibiotics 2023, 12(6), 1076; https://doi.org/10.3390/antibiotics12061076 - 19 Jun 2023
Cited by 4 | Viewed by 2172
Abstract
Because of the close connection between adhesion and many vital cellular functions, the search for new compounds modulating the adhesion of bacteria belonging to the intestinal microbiota is a great challenge and a clinical need. Based on our previous studies, we discovered that [...] Read more.
Because of the close connection between adhesion and many vital cellular functions, the search for new compounds modulating the adhesion of bacteria belonging to the intestinal microbiota is a great challenge and a clinical need. Based on our previous studies, we discovered that O-lkyl naringenin derivatives and their oximes exhibit antimicrobial activity against antibiotic-resistant pathogens. The current study was aimed at determining the modulatory effect of these compounds on the adhesion of selected representatives of the intestinal microbiota: Escherichia coli, a commensal representative of the intestinal microbiota, and Enterococcus faecalis, a bacterium that naturally colonizes the intestines but has disease-promoting potential. To better reflect the variety of real-life scenarios, we performed these studies using two different intestinal cell lines: the physiologically functioning (“healthy”) 3T3-L1 cell line and the disease-mimicking, cancerous HT-29 line. The study was performed in vitro under static and microfluidic conditions generated by the Bioflux system. We detected the modulatory effect of the tested O-alkyl naringenin derivatives on bacterial adhesion, which was dependent on the cell line studied and was more significant for E. coli than for E. faecalis. In addition, it was noticed that this activity was affected by the concentration of the tested compound and its structure (length of the carbon chain). In summary, O-alkyl naringenin derivatives and their oximes possess a promising modulatory effect on the adhesion of selected representatives of the intestinal microbiota. Full article
Show Figures

Figure 1

18 pages, 1594 KiB  
Article
Antiproliferative Activity and Impact on Human Gut Microbiota of New O-Alkyl Derivatives of Naringenin and Their Oximes
by Joanna Kozłowska, Anna Duda-Madej and Dagmara Baczyńska
Int. J. Mol. Sci. 2023, 24(12), 9856; https://doi.org/10.3390/ijms24129856 - 7 Jun 2023
Cited by 6 | Viewed by 2058
Abstract
Naringenin is a 5,7,4′-trihydroxyflavanone naturally occurring mainly in citrus fruits, characterized by a wide spectrum of biological activity. Chemical modifications based on alkylation and oximation in most cases increase its bioactivity. The aim of our research was to evaluate the antiproliferative activity and [...] Read more.
Naringenin is a 5,7,4′-trihydroxyflavanone naturally occurring mainly in citrus fruits, characterized by a wide spectrum of biological activity. Chemical modifications based on alkylation and oximation in most cases increase its bioactivity. The aim of our research was to evaluate the antiproliferative activity and influence on selected representatives of the human gut microbiota of new synthesized O-alkyl derivatives (A1A10) and their oximes (B1B10), which contain hexyl, heptyl, octyl, nonyl and undecyl chains attached to the C-7 or to both the C-7 and C-4′ positions in naringenin. To the best of our knowledge, compounds A3, A4, A6, A8A10 and B3B10 have not been described in the scientific literature previously. The anticancer activity was tested on human colon cancer cell line HT-29 and mouse embryo fibroblasts 3T3-L1 using the sulforhodamine B (SRB) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assays. We also determined the impacts of all compounds on the growth of Gram-positive and Gram-negative bacterial strains, such as Staphylococcus aureus, Enterococcus faecalis and Escherichia coli. The antimicrobial activity was expressed in terms of minimal inhibitory concentrations (MIC) and minimal bactericidal concentrations (MBC) values. For 7,4′-di-O-hexylnaringenin (A2), 7-O-undecylnaringenin (A9) and their oximes (B2, B9), which were safe for microbiota (MIC > 512 µg/mL) and almost all characterized by high cytotoxicity against the HT-29 cell line (A2: IC50 > 100 µg/mL; A9: IC50 = 17.85 ± 0.65 µg/mL; B2: IC50 = 49.76 ± 1.63 µg/mL; B9: IC50 = 11.42 ± 1.17 µg/mL), apoptosis assays were performed to elucidate their mechanisms of action. Based on our results, new compound B9 induced an apoptotic process via caspase 3/7 activation, which proved its potential as an anticancer agent. Full article
Show Figures

Figure 1

20 pages, 4054 KiB  
Article
Antimicrobial O-Alkyl Derivatives of Naringenin and Their Oximes Against Multidrug-Resistant Bacteria
by Anna Duda-Madej, Joanna Kozłowska, Paweł Krzyżek, Mirosław Anioł, Alicja Seniuk, Katarzyna Jermakow and Ewa Dworniczek
Molecules 2020, 25(16), 3642; https://doi.org/10.3390/molecules25163642 - 10 Aug 2020
Cited by 24 | Viewed by 4739
Abstract
New antimicrobial agents are needed to address infections caused by multidrug-resistant bacteria. Here, we are reporting novel O-alkyl derivatives of naringenin and their oximes, including novel compounds with a naringenin core and O-hexyl chains, showing activity against clinical strains of clarithromycin-resistant [...] Read more.
New antimicrobial agents are needed to address infections caused by multidrug-resistant bacteria. Here, we are reporting novel O-alkyl derivatives of naringenin and their oximes, including novel compounds with a naringenin core and O-hexyl chains, showing activity against clinical strains of clarithromycin-resistant Helicobacter pylori, vancomycin-resistant Enterococcus faecalis, methicillin-resistant Staphylococcus aureus, and beta-lactam-resistant Acinetobacter baumannii and Klebsiella pneumoniae. The minimum inhibitory concentrations (MICs), which provide a quantitative measure of antimicrobial activity, were in the low microgram range for the selected compounds. Checkerboard assays for the most active compounds in combination with antibiotics revealed interactions that varied from synergistic to neutral. Full article
Show Figures

Figure 1

15 pages, 572 KiB  
Article
Novel O-alkyl Derivatives of Naringenin and Their Oximes with Antimicrobial and Anticancer Activity
by Joanna Kozłowska, Ewa Grela, Dagmara Baczyńska, Agnieszka Grabowiecka and Mirosław Anioł
Molecules 2019, 24(4), 679; https://doi.org/10.3390/molecules24040679 - 14 Feb 2019
Cited by 45 | Viewed by 5171
Abstract
In our investigation, we concentrated on naringenin (NG)—a widely studied flavanone that occurs in citrus fruits. As a result of a reaction with a range of alkyl iodides, 7 novel O-alkyl derivatives of naringenin (7a11a, 13a [...] Read more.
In our investigation, we concentrated on naringenin (NG)—a widely studied flavanone that occurs in citrus fruits. As a result of a reaction with a range of alkyl iodides, 7 novel O-alkyl derivatives of naringenin (7a11a, 13a, 17a) were obtained. Another chemical modification led to 9 oximes of O-alkyl naringenin derivatives (7b13b, 16b17b) that were never described before. The obtained compounds were evaluated for their potential antibacterial activity against Escherichia coli, Staphylococcus aureus, and Bacillus subtilis. The results were reported as the standard minimal inhibitory concentration (MIC) values and compared with naringenin and its known O-alkyl derivatives. Compounds 4a, 10a, 12a, 14a, 4b, 10b, 11b, and 14b were described with MIC of 25 µg/mL or lower. The strongest bacteriostatic activity was observed for 7-O-butylnaringenin (12a) against S. aureus (MIC = 6.25 µg/mL). Moreover, the antitumor effect of flavonoids was examined on human colon cancer cell line HT-29. Twenty-six compounds were characterized as possessing an antiproliferative activity stronger than that of naringenin. The replacement of the carbonyl group with an oxime moiety significantly increased the anticancer properties. The IC50 values below 5 µg/mL were demonstrated for four oxime derivatives (8b, 11b, 13b and 16b). Full article
Show Figures

Figure 1

14 pages, 1098 KiB  
Article
Synthesis and Biological Activity of Novel O-Alkyl Derivatives of Naringenin and Their Oximes
by Joanna Kozłowska, Bartłomiej Potaniec, Barbara Żarowska and Mirosław Anioł
Molecules 2017, 22(9), 1485; https://doi.org/10.3390/molecules22091485 - 6 Sep 2017
Cited by 40 | Viewed by 7274
Abstract
O-Alkyl derivatives of naringenin (1a10a) were prepared from naringenin using the corresponding alkyl iodides and anhydrous potassium carbonate. The resulting products were used to obtain oximes (1b10b). All compounds were tested for antimicrobial activity [...] Read more.
O-Alkyl derivatives of naringenin (1a10a) were prepared from naringenin using the corresponding alkyl iodides and anhydrous potassium carbonate. The resulting products were used to obtain oximes (1b10b). All compounds were tested for antimicrobial activity against Escherichia coli ATCC10536, Staphylococcus aureus DSM799, Candida albicans DSM1386, Alternaria alternata CBS1526, Fusarium linii KB-F1, and Aspergillus niger DSM1957. The resulting biological activity was expressed as the increase in optical density (ΔOD). The highest inhibitory effect against E. coli ATCC10536 was observed for 7,4′-di-O-pentylnaringenin (8a), 7-O-dodecylnaringenin (9a), naringenin oxime (NG-OX), 7,4′-di-O-pentylnaringenin oxime (8b), and 7-O-dodecylnaringenin oxime (9b) (ΔOD = 0). 7-O-dodecylnaringenin oxime (9b) also inhibited the growth of S. aureus DSM799 (ΔOD = 0.35) and C. albicans DSM1386 (ΔOD = 0.22). The growth of A. alternata CBS1526 was inhibited as a result of the action of 7,4′-di-O-methylnaringenin (2a), 7-O-ethylnaringenin (4a), 7,4′-di-O-ethylnaringenin (5a), 5,7,4′-tri-O-ethylnaringenin (6a), 7,4′-di-O-pentylnaringenin (8a), and 7-O-dodecylnaringenin (9a) (ΔOD in the range of 0.49–0.42) in comparison to that of the control culture (ΔOD = 1.87). In the case of F. linii KB-F1, naringenin (NG), 7,4′-di-O-dodecylnaringenin (10a), 7-O-dodecylnaringenin oxime (9b), and 7,4′-di-O-dodecylnaringenin oxime (10b) showed the strongest effect (ΔOD = 0). 7,4′-Di-O-pentylnaringenin (8a) and naringenin oxime (NG-OX) hindered the growth of A. niger DSM1957 (ΔOD = 0). Full article
(This article belongs to the Special Issue Emerging Drug Discovery Approaches against Infectious Diseases)
Show Figures

Figure 1

Back to TopTop