Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = Nyssorhynchus darlingi

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 3943 KiB  
Article
Mutations Linked to Insecticide Resistance Not Detected in the Ace-1 or VGSC Genes in Nyssorhynchus darlingi from Multiple Localities in Amazonian Brazil and Peru
by Sara A. Bickersmith, John D. Jurczynski, Maria Anice Mureb Sallum, Leonardo S. M. Chaves, Eduardo S. Bergo, Gloria A. D. Rodriguez, Clara A. Morante, Carlos T. Rios, Marlon P. Saavedra, Freddy Alava, Dionicia Gamboa, Joseph M. Vinetz and Jan E. Conn
Genes 2023, 14(10), 1892; https://doi.org/10.3390/genes14101892 - 29 Sep 2023
Cited by 1 | Viewed by 1818
Abstract
Indoor residual spray (IRS), mainly employing pyrethroid insecticides, is the most common intervention for preventing malaria transmission in many regions of Latin America; the use of long-lasting insecticidal nets (LLINs) has been more limited. Knockdown resistance (kdr) is a well-characterized target-site [...] Read more.
Indoor residual spray (IRS), mainly employing pyrethroid insecticides, is the most common intervention for preventing malaria transmission in many regions of Latin America; the use of long-lasting insecticidal nets (LLINs) has been more limited. Knockdown resistance (kdr) is a well-characterized target-site resistance mechanism associated with pyrethroid and DDT resistance. Most mutations detected in acetylcholinesterase-1 (Ace-1) and voltage-gated sodium channel (VGSC) genes are non-synonymous, resulting in a change in amino acid, leading to the non-binding of the insecticide. In the present study, we analyzed target-site resistance in Nyssorhynchus darlingi, the primary malaria vector in the Amazon, in multiple malaria endemic localities. We screened 988 wild-caught specimens of Ny. darlingi from three localities in Amazonian Peru and four in Amazonian Brazil. Collections were conducted between 2014 and 2021. The criteria were Amazonian localities with a recent history as malaria hotspots, primary transmission by Ny. darlingi, and the use of both IRS and LLINs as interventions. Fragments of Ace-1 (456 bp) and VGSC (228 bp) were amplified, sequenced, and aligned with Ny. darlingi sequences available in GenBank. We detected only synonymous mutations in the frequently reported Ace-1 codon 280 known to confer resistance to organophosphates and carbamates, but detected three non-synonymous mutations in other regions of the gene. Similarly, no mutations linked to insecticide resistance were detected in the frequently reported codon (995) at the S6 segment of domain II of VGSC. The lack of genotypic detection of insecticide resistance mutations by sequencing the Ace-1 and VGSC genes from multiple Ny. darlingi populations in Brazil and Peru could be associated with low-intensity resistance, or possibly the main resistance mechanism is metabolic. Full article
Show Figures

Figure 1

10 pages, 11639 KiB  
Article
Susceptibility of Field-Collected Nyssorhynchus darlingi to Plasmodium spp. in Western Amazonian Brazil
by Diego Peres Alonso, Marcus Vinicius Niz Alvarez, Paulo Eduardo Martins Ribolla, Jan E. Conn, Tatiane Marques Porangaba de Oliveira and Maria Anice Mureb Sallum
Genes 2021, 12(11), 1693; https://doi.org/10.3390/genes12111693 - 25 Oct 2021
Cited by 2 | Viewed by 2635
Abstract
Mosquito susceptibility to Plasmodium spp. infection is of paramount importance for malaria occurrence and sustainable transmission. Therefore, understanding the genetic features underlying the mechanisms of susceptibility traits is pivotal to assessing malaria transmission dynamics in endemic areas. The aim of this study was [...] Read more.
Mosquito susceptibility to Plasmodium spp. infection is of paramount importance for malaria occurrence and sustainable transmission. Therefore, understanding the genetic features underlying the mechanisms of susceptibility traits is pivotal to assessing malaria transmission dynamics in endemic areas. The aim of this study was to investigate the susceptibility of Nyssorhynchus darlingi—the dominant malaria vector in Brazil—to Plasmodium spp. using a reduced representation genome-sequencing protocol. The investigation was performed using a genome-wide association study (GWAS) to identify mosquito genes that are predicted to modulate the susceptibility of natural populations of the mosquito to Plasmodium infection. After applying the sequence alignment protocol, we generated the variant panel and filtered variants; leading to the detection of 202,837 SNPs in all specimens analyzed. The resulting panel was used to perform GWAS by comparing the pool of SNP variants present in Ny. darlingi infected with Plasmodium spp. with the pool obtained in field-collected mosquitoes with no evidence of infection by the parasite (all mosquitoes were tested separately using RT-PCR). The GWAS results for infection status showed two statistically significant variants adjacent to important genes that can be associated with susceptibility to Plasmodium infection: Cytochrome P450 (cyp450) and chitinase. This study provides relevant knowledge on malaria transmission dynamics by using a genomic approach to identify mosquito genes associated with susceptibility to Plasmodium infection in Ny. darlingi in western Amazonian Brazil. Full article
(This article belongs to the Special Issue Evolutionary Genetics and Phylogenetics of Mosquito Species)
Show Figures

Figure 1

12 pages, 3391 KiB  
Article
Physical Mapping of the Anopheles (Nyssorhynchus) darlingi Genomic Scaffolds
by Míriam Silva Rafael, Leticia Cegatti Bridi, Igor V. Sharakhov, Osvaldo Marinotti, Maria V. Sharakhova, Vladimir Timoshevskiy, Giselle Moura Guimarães-Marques, Valéria Silva Santos, Carlos Gustavo Nunes da Silva, Spartaco Astolfi-Filho and Wanderli Pedro Tadei
Insects 2021, 12(2), 164; https://doi.org/10.3390/insects12020164 - 15 Feb 2021
Cited by 1 | Viewed by 3153
Abstract
The genome assembly of Anopheles darlingi consists of 2221 scaffolds (N50 = 115,072 bp) and has a size spanning 136.94 Mbp. This assembly represents one of the smallest genomes among Anopheles species. Anopheles darlingi genomic DNA fragments of ~37 Kb were cloned, end-sequenced, [...] Read more.
The genome assembly of Anopheles darlingi consists of 2221 scaffolds (N50 = 115,072 bp) and has a size spanning 136.94 Mbp. This assembly represents one of the smallest genomes among Anopheles species. Anopheles darlingi genomic DNA fragments of ~37 Kb were cloned, end-sequenced, and used as probes for fluorescence in situ hybridization (FISH) with salivary gland polytene chromosomes. In total, we mapped nine DNA probes to scaffolds and autosomal arms. Comparative analysis of the An. darlingi scaffolds with homologous sequences of the Anopheles albimanus and Anopheles gambiae genomes identified chromosomal rearrangements among these species. Our results confirmed that physical mapping is a useful tool for anchoring genome assemblies to mosquito chromosomes. Full article
(This article belongs to the Collection Genomics and Cytogenetics of Mosquitoes)
Show Figures

Figure 1

Back to TopTop