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Abstract: Indoor residual spray (IRS), mainly employing pyrethroid insecticides, is the most common
intervention for preventing malaria transmission in many regions of Latin America; the use of
long-lasting insecticidal nets (LLINs) has been more limited. Knockdown resistance (kdr) is a well-
characterized target-site resistance mechanism associated with pyrethroid and DDT resistance. Most
mutations detected in acetylcholinesterase-1 (Ace-1) and voltage-gated sodium channel (VGSC) genes
are non-synonymous, resulting in a change in amino acid, leading to the non-binding of the insecticide.
In the present study, we analyzed target-site resistance in Nyssorhynchus darlingi, the primary malaria
vector in the Amazon, in multiple malaria endemic localities. We screened 988 wild-caught specimens
of Ny. darlingi from three localities in Amazonian Peru and four in Amazonian Brazil. Collections
were conducted between 2014 and 2021. The criteria were Amazonian localities with a recent history
as malaria hotspots, primary transmission by Ny. darlingi, and the use of both IRS and LLINs as
interventions. Fragments of Ace-1 (456 bp) and VGSC (228 bp) were amplified, sequenced, and
aligned with Ny. darlingi sequences available in GenBank. We detected only synonymous mutations
in the frequently reported Ace-1 codon 280 known to confer resistance to organophosphates and
carbamates, but detected three non-synonymous mutations in other regions of the gene. Similarly, no
mutations linked to insecticide resistance were detected in the frequently reported codon (995) at the
S6 segment of domain II of VGSC. The lack of genotypic detection of insecticide resistance mutations
by sequencing the Ace-1 and VGSC genes from multiple Ny. darlingi populations in Brazil and
Peru could be associated with low-intensity resistance, or possibly the main resistance mechanism
is metabolic.
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1. Introduction

Indoor residual spray (IRS) and, more recently, long-lasting insecticidal nets (LLINs),
have been used as the primary malaria vector control interventions due to their cost-
effectiveness and protection against vectors that feed and rest mainly indoors [1,2]. In
contrast, in Latin America, many vectors feed and rest primarily outdoors (exophagy and
exophily, respectively). This behavior, together with the widespread existence of houses
with incomplete walls, communities where unprotected travel-related occupations are
common [3–5], and the temporally irregular application of IRS in many communities
diminishes the effectiveness of insecticide-based interventions throughout Latin America
in relation to some other endemic malaria regions [6,7].

In 2007, the World Health Organization’s (WHO) recommendations for LLIN distribu-
tion were broadened to include all individuals in endemic malaria areas, rather than solely
pregnant women and children under the age of 5 [8]. Simultaneously, the WHO guidelines
called for endemic malaria nations to adopt triennial LLIN mass distribution campaigns,
which would allocate one LLIN for every two people per household in a given region,
aspiring to universal coverage [9]. Following these updates, mass distribution campaigns
became more prevalent in Latin America, particularly in the Amazon region. In Peru, the
Project for Malaria Control in Andean Border Areas (PAMAFRO) was mainly responsible
for a 70% decrease in cases from 2005 to 2011 [9]. Since the program was discontinued,
malaria cases have increased fairly steadily due to a decline in international and domestic
funding [10]. The sharpest increase in cases throughout the Latin American region occurred
between 2014 and 2017, when case incidence nearly doubled [11]; ironically, incidence has
apparently decreased with the recent COVID-19 pandemic [12]. An encouraging sign is
that the Ministry Health, Peru, adopted a new plan as of January 2022 to eliminate malaria
by 2030 [13].

Between 2010 and 2019, an estimated 28 endemic malaria countries (of 82) detected
insecticide resistance to all four of the most commonly used insecticides (pyrethroids,
organochlorines, carbamates, and organophosphates), and nearly all (73/82) have reported
resistance to at least one class [14,15]. Worldwide, the exposure of mosquitoes to any of
these classes of insecticides [16], whether for public health or agricultural use, has the
potential to be a strong selective force that favors the survival of resistant populations [17].
In Latin America, there is relatively little entomological surveillance and few published
studies on insecticide resistance (IR), except for Nyssorhynchus albimanus [18]. The primary
malaria vector in the Amazon, Ny. darlingi, is generally susceptible to insecticides [17,19]
and exhibits exo- and endophagic behavior, depending on its local circumstances [20].
Nevertheless, resistance based on bioassays using WHO paper bioassays [21] or CDC bottle
bioassays [22,23] has been reported for Ny. darlingi to pyrethroids and carbamates (Bo-
livia), pyrethroids (Brazil), pyrethroids and organochlorines (Colombia), and pyrethroids,
carbamates, and organophosphates (Peru) [24].

IR in mosquitoes can result from several mechanisms. One of the best-characterized
is knockdown resistance (kdr) or target-site point mutations, commonly associated with
pyrethroid and DDT resistance [25,26]. The site of most kdr mutations is either the voltage-
gated channel (VGSC) corresponding to the VGSC gene, located in the transmembrane seg-
ment IIS6 or the linker regions that connect domains III and IV, or the acetylcholinesterase-1
(Ace-1) gene in anophelinae and other mosquito species. The Asian malaria vector Anopheles
culicifacies was one of the earliest anophelines to be found to be resistant to DDT in Gujerat
State, India, using DDT-impregnated paper [27]. On the other hand, the first instance of
DDT resistance in Ny. darlingi was not detected until 1990, using WHO techniques for sus-
ceptibility [28] in the Choco region of northwestern Colombia [29]. The second mechanism,
behavioral modification, is a change in behavior, such as the avoidance of or repellence
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in response to insecticide-impregnated surfaces, or a modification in location (outdoors
vs. indoors; dispersion to untreated houses), or time of day of blood seeking. This has
been called qualitative behavioral resistance recently [30]. The first systematic study of Ny.
darlingi behavioral modification was a demonstration of repellency to DDT-impregnated
house surfaces in Amazonian Brazil [31]. A second example is the detection of fewer Ny.
darlingi biting outdoors and more indoors between the distributions of LLINs (as the nets
aged and became non-repellent) in Amazonian Peru [32]. Another mechanism is increased
metabolism (detoxification/sequestration) through mixed-function oxidases (MFO) and
non-specific esterases (NSE) that have developed during insect evolutionary history as
protection against a range of plant toxins [33,34].

Of these mechanisms, only target-site—considered to be the most accurate indicator of
resistance—can be identified using molecular assays [35]. These assays detect amino acid
substitutions that give rise to non-synonymous amino acid changes in insecticide targets,
ultimately preventing the insecticide from binding, leading to resistance [36]. Among
the genes of interest are voltage-gated sodium channel (VGSC) and acetylcholinesterase-1
(Ace-1), which encode for the target binding of pyrethroids/organochlorines and carba-
mates/organophosphates, respectively [26,36]. Mutations linked most frequently with IR
are L995F and L995S in VGSC [37] and G280S in Ace-1 [38]. Other mutations include L995C,
L995W, V991L, and V994S in VGSC [38], and, in Ace-1, A221T and S216T [18]. Codon 995 in
VGSC and codon 280 in Ace-1 were referred to formerly as 1014 and 119, respectively [18].
Despite the accuracy of molecular assays, susceptibility (or phenotypic) bioassays are
advantageous because hundreds of mosquitoes can be tested simultaneously with rela-
tively simple equipment [24,35]. Having data from both molecular assays and phenotypic
bioassays is ideal for assessing resistance frequency [36].

The combination of resurgent cases of malaria since 2014 and the widespread increase
in the use of insecticides, yet the scarce reporting of resistant vectors, suggest a potential
knowledge gap in IR throughout the Latin American region. IR detection requires the
strategic selection of localities in which mosquito samples are collected and analyzed.
Commonly used selection criteria from previous reports include accessibility by land or
water, a history of insecticide use, a high malaria prevalence, and a sample size sufficient
even for a population with a low frequency of resistant vectors [39,40]. This study aims to
help close the knowledge gap in Ny. darlingi by using molecular assays for a relatively large
sample size covering multiple localities, uncovering novel codon mutations, and providing
insight that may assist in improving malaria vector control interventions.

2. Materials and Methods
2.1. Sample Collection

Samples of Ny. darlingi were collected in several rural and riverine localities through-
out Amazonian Brazil and Peru in 2014–2021 (Table 1; Figure 1). Sample locations were
based on information from local health officials about exposure to IRS or LLINs. In Cruzeiro
do Sul, Acre, Brazil, local public health personnel (Brazil Ministry of Health and Instituto
Evandro Chagas) demonstrated phenotypic resistance via discriminating concentration
bioassays to deltamethrin and cypermethrin from 2012 to 2014 [41]. In the villages of
Gamitanacocha and Zungarococha, Peru, local health authorities (Laboratorio Referen-
cial de Salud Pública Loreto) demonstrated phenotypic resistance and possible resistance,
respectively, to pyrethroids in 2018 [41]. Furthermore, Zungarococha and Cahuide are
both along a highway where extensive IRS was used during a major malaria outbreak
in 2012 [10].

Mosquito collections were performed indoors, peridomestically, or in forest edge
settings during various time periods throughout the evening using human landing catch,
barrier screen sampling, or Shannon traps [32,42,43]. Details on the forest cover level [42],
field collection protocols [32,43], and Plasmodium vivax malaria incidence [43] have been
reported previously. Collected mosquitoes were identified to species morphologically by
trained personnel using regional taxonomic keys [44–46] and stored on silica gel until a
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genetic analysis was conducted. Genomic DNA was extracted from whole mosquitoes
using the Qiagen DNeasy Blood & Tissue Kit (Qiagen, Germantown, MD, USA).
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Humaitá; and MO: Machadinho d’Oeste).

Table 1. Summary of Ny. darlingi samples sequenced for the Ace-1 and VGSC genes.

Locality State/Dept Country Latitude Longitude Collection Year Ace-1 N VGSC N

Cruzeiro do Sul (CS) Acre Brazil −7.631889 −72.688722 2015 49 50
Humaitá (HUM) Amazonas Brazil −6.980687 −63.100031 2016 49 49

Machadinho d’Oeste (MO) Rondônia Brazil −9.193528 −62.230107 2015 50 50
Mâncio Lima (ML) Acre Brazil −7.620124 −72.885559 2015 50 50

Gamitanacocha (GAM) Loreto Peru −3.426000 −73.318000 2018 50 50
Zungarococha (ZUN) Loreto Peru −3.824560 −73.343880 2019; 2021 106 107

Cahuide (CAH) Loreto Peru −4.230350 −73.487833 2014; 2019 139 139

TOTAL 493 495

N: Number of individual mosquitoes sequenced.

2.2. Molecular Analysis

Samples used for the genetic analysis were selected randomly from the available
specimens in storage using a random number generator [47]. As year-round samples from
Cahuide were available, we selected specimens from both the rainy and dry seasons [32].
The amplification of a 228 bp fragment of the kdr region of the VGSC gene, between exons
20 and 21, was performed in a 20 µL PCR mixture containing a 1.0–15 ng/µL DNA template,
1× AllTaq Master Mix (Qiagen), and 0.5 µM of each primer: AAKDRF2 and AAKDRR2,
with the same cycling conditions as in [16]. Amplification of a 456 bp fragment of Exon 2 in
the Ace-1 gene was performed in a 25 µL PCR mixture containing a 1.0–15 ng/µL DNA
template [43], 2 U of Taq DNA Polymerase (Qiagen), 10× PCR Buffer (Qiagen) containing
1.5 µM of MgCl2, a supplemental 0.5 µM of MgCl2 totaling 2.0 µM of MgCl2, 0.2 µM
of dNTPs, and 0.4 µM of each primer ACE1DAF and ACE1DAR, with the same cycling
conditions as in [18].
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SSamples were Sanger sequenced in forward and reverse directions at the Wadsworth
Center Advanced Genomic Technologies Core (New York State Department of Health).
Chromatograms of each sample were cleaned, converted into consensus sequences, trans-
lated, and exported to FASTA files using Geneious Prime Version 2020.2 [48]. Consen-
sus sequences were aligned using ClustalW in MegaX Version 10.1.7, then analyzed in
comparison to existing VGSC and Ace-1 sequences of Ny. darlingi from GenBank [16].
Unique sequences for VGSC were deposited in GenBank under the accession numbers:
OR260704–OR260712 and Ace-1 under the accession numbers: OR260713–OR260857. The
sSequences for both genes were examined for non-synonymous (amino acid change) and
synonymous (no amino acid change) point mutations, with special focus on the docu-
mented codons known to convey insecticide resistance within these gene regions.

3. Results
3.1. Detection of Voltage-Gated Sodium Channel (VGSC) Mutations

A total of 495 wild-caught Ny. darlingi, 296 from Peru and 199 from Brazil, were
successfully sequenced for the kdr target-site resistance region of the VGSC gene (Table 1).
SSequences were aligned with the aid of the Ny. darlingi VGSC sequences available in
Genbank [16]. We detected nine unique genotypes (denoted as V1–V9, corresponding
to Genbank IDs OR260704–OR260712), with only the susceptible genotype TTA (leucine)
observed at codon position 995 (Figure 2). The only point mutations detected were in the
intron and primer regions.
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3.2. Detection of Acetylcholinesterase-1 (Ace-1) Mutations

We successfully sequenced 493 Ny. darlingi, 295 from Peru and 198 from Brazil, for
the Ace-1 gene (Table 1), and detected 145 unique genotypes (named AC1–AC145, corre-
sponding to Genbank IDs OR260713–OR260857). The susceptible genotype GGG/GGG or
GGG/GGC (glycine) was observed at codon 280 across all samples. Three non-synonymous
mutations were detected in samples from three populations (Humaitá and Mâncio Lima,
Brazil; and Cahuide, Peru) within other regions of the Ace-1 gene not known to convey
insecticide resistance (Figure 3).
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3.3. Data Management

Unique sequences of Ny. darlingi for VGSC were deposited in GenBank under accession
numbers: OR260704–OR260712, and for Ace-1, under accession numbers: OR260713–OR260857.
All sample results will be deposited in VectorBase pending publication.
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4. Discussion

A molecular analysis of a ~228 bp fragment that encodes for the kdr target-site resis-
tance region of the VGSC gene and a ~456 bp fragment of the Ace-1 gene did not detect
any non-synonymous mutations in the specimens of Ny. darlingi from endemic malaria
areas of Brazil and Peru in the current study, similar to results of a recent analysis of
Ny. darlingi from locations in Brazil (Manaus, Unini River, Jau River in Amazonas State,
and Porto Velho, Rondônia state) and Colombia (Tagachi and Chocó Department) [49].
An investigation of specimens of Ny. darlingi from Chocó Department, Colombia, that
had been demonstrated to be phenotypically susceptible and resistant, sequenced for the
same region of the VGSC gene, also did not reveal any kdr mutations [16]. However, the
classic L1014F kdr mutation has been detected in other important anopheline malaria vec-
tors, i.e., Nyssorhynchus albimanus [16,50,51] and Nyssorhynchus albitarsis s.s. [52]. Other
species of Latin American malaria vectors evaluated with these molecular assays include
Anopheles vestitipennis and Anopheles pseudopunctipennis, both of which exhibited genotypic
susceptibility [16]. The lack of genotypic evidence of IR in Ny. darlingi could be a reflection
of limited regional data, rather than the absence of resistance [53]. On the other hand,
Floch [54] suggested that frequent reintroduction of wild susceptible populations of Ny.
darlingi from forest into village populations could reduce selection for insecticide resistance.
This hypothesis received some support from a study in the Porto Velho area in Rondônia
state, Brazil, that detected seasonal gene flow between forested and urban populations of
Ny. darlingi [55].

Several previous studies of Anopheles malaria vectors have attributed a proportion of
recent malaria case resurgence to increased outdoor biting and insecticide resistance (IR)
following mass distribution campaigns [56–59], although there is no evidence in support of
this latter trend for Ny. darlingi across Latin America (the scale-up of LLIN distribution has
been limited compared with Africa) or after the completion of the intensive PAMAFRO
project in Peru. Even though daytime biting behavior in members of the An. gambiae
complex has been hypothesized to increase transmission [60], in Latin America, there has
been scant investigation into this phenomenon, except for observations of Ny. darlingi
biting during the day in forested French Guiana malaria hotspots [61].

The hot, rainy climate of the Amazon basin is optimal for mosquito habitats [62];
however, anthropogenic landscape changes—namely, forest fragmentation and an increased
ecotone density—suggest that vector behavior (mainly exophagy and exophily in Ny.
darlingi) and distribution (i.e., along ecotones for Ny. darlingi) in one location may not be
generalizable to an entire region [63,64]. For example, during a recent malaria outbreak in
French Guiana, Ny. darlingi was the only anopheline collected both outdoors and indoors,
and its abundance was exceptionally high, possibly attributed to regional deforestation,
and/or the higher than average rainy and dry seasons in 2017 [65]. Ny. darlingi has also
been collected biting during the day in French Guiana forests [66,67] and along the Maroni
River, a former malaria hotspot, in Suriname [68]. This appears to be a focal phenomenon
in Ny. darlingi, perhaps a behavioral avoidance response to IRS or LLINs.

The majority of IR reports in Latin America are based on bioassay data from the
Amazon Basin or Central America [24,36]. However, the recent genotypic reporting of
several Brazilian samples of Ny. albitarsis s.s. showed heterozygous L995F mutations in
VGSC [52], and a sample of Guatemalan Ny. albimanus had a heterozygous G280S mutation
in Ace-1 [69]. Both of these reports inferred that agricultural insecticide use was the driver
of IR, and a recent review of the contribution of agricultural insecticides and increasing
insecticide resistance in malaria vectors found a strong association across Africa that could
be affected by crop type (especially cotton and vegetables), urban development, and the
strategies undertaken for farm pest management [70]. Questionnaires and insecticide
susceptibility bioassays utilized in a field study in two South Côte d’Ivoire communities
determined that local mosquito vectors were resistant to three of four insecticides tested,
and the authors highlighted the need for collaboration between the public health and
agricultural sectors to develop interventions that would benefit both [71]. Resistance in the
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important regional malaria vector, Ny. albimanus, has been detected in Central America,
Panama, and northwestern coastal Peru, linked mainly to agriculture in general and rice
cultivation in coastal Peru in particular [17].

Public health insecticide use can exert comparable selective pressure on malaria
vectors [72], including, for example, the organophosphate malathion used in Brazilian
public health for the arboviral vectors Aedes aegypti and Aedes albopictus to reduce the
transmission of viruses such as dengue, chikungunya, and Zika [73]. Resistance in the
vector Culex quinquefasciatus in Brazil has been detected for organophosphates, carbamate,
DDT, pyrethroids, and biolarvicides; the concern for such resistance to arise in malaria
vectors in Brazil, where they co-occur with Cx. quinquefasciatus, is limited to Fortaleza,
Ceará state, and parts of Mato Grosso state [74].

For control of adult mosquitoes, IRS on interior house walls will kill resting mosquitoes;
some also repel mosquitoes such that they modify their behavior and rest outdoors [17].
Based on an evaluation of the residual effects of four insecticides (deltamethrin, pyrethroids,
lambda-cyhalothrin, and etofenprox) used on a range of wall materials in Amazonian
Brazil [75], the Brazilian National Malaria Control Plan has been consistently using etofen-
prox PM 20% for residual spray in houses since 2013 [19], although a similar study of
six insecticides in Amapá, Brazil, by Correa et al. [76] found that deltamethrin WG at
0.025 gm/m2 had the highest residual effects. In Peru, pyrethroid deltamethrin 5% is the
most commonly applied insecticide for IRS [32].

Other approaches to tackling insecticide resistance consider biological control in
general [77] or the replacement of synthetic compounds with plant-based compounds
formulated as bioinsecticides, reviewed in Demirak and Canpolat [15]. The classes of
compounds described and discussed were phytochemicals, pheromones, microbial pes-
ticides, and plant-incorporated protectants; selected candidate compounds demonstrate
larvicidal, adulticidal, and repellent properties. In general, their advantages are, compared
to synthetic compounds, a lower toxicity, target specificity, being highly effectivity in small
quantities, and they are biodegradable. Despite considerable promise, these products
remain in various stages of development, and have not yet been field-tested for use against
malaria vectors. As many target insects have evolved successful resistance mechanisms to
most classes of insecticides, the evolution of different modes of action against plant-based
insecticides could temper the early enthusiasm for such novel products [33].
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