Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = Neyman–Pearson region

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
50 pages, 652 KiB  
Article
Non-Negative Decomposition of Multivariate Information: From Minimum to Blackwell-Specific Information
by Tobias Mages, Elli Anastasiadi and Christian Rohner
Entropy 2024, 26(5), 424; https://doi.org/10.3390/e26050424 - 15 May 2024
Cited by 5 | Viewed by 2263
Abstract
Partial information decompositions (PIDs) aim to categorize how a set of source variables provides information about a target variable redundantly, uniquely, or synergetically. The original proposal for such an analysis used a lattice-based approach and gained significant attention. However, finding a suitable underlying [...] Read more.
Partial information decompositions (PIDs) aim to categorize how a set of source variables provides information about a target variable redundantly, uniquely, or synergetically. The original proposal for such an analysis used a lattice-based approach and gained significant attention. However, finding a suitable underlying decomposition measure is still an open research question at an arbitrary number of discrete random variables. This work proposes a solution with a non-negative PID that satisfies an inclusion–exclusion relation for any f-information measure. The decomposition is constructed from a pointwise perspective of the target variable to take advantage of the equivalence between the Blackwell and zonogon order in this setting. Zonogons are the Neyman–Pearson region for an indicator variable of each target state, and f-information is the expected value of quantifying its boundary. We prove that the proposed decomposition satisfies the desired axioms and guarantees non-negative partial information results. Moreover, we demonstrate how the obtained decomposition can be transformed between different decomposition lattices and that it directly provides a non-negative decomposition of Rényi-information at a transformed inclusion–exclusion relation. Finally, we highlight that the decomposition behaves differently depending on the information measure used and how it can be used for tracing partial information flows through Markov chains. Full article
Show Figures

Figure 1

24 pages, 1216 KiB  
Article
Empirical Squared Hellinger Distance Estimator and Generalizations to a Family of α-Divergence Estimators
by Rui Ding and Andrew Mullhaupt
Entropy 2023, 25(4), 612; https://doi.org/10.3390/e25040612 - 4 Apr 2023
Cited by 4 | Viewed by 4087
Abstract
We present an empirical estimator for the squared Hellinger distance between two continuous distributions, which almost surely converges. We show that the divergence estimation problem can be solved directly using the empirical CDF and does not need the intermediate step of estimating the [...] Read more.
We present an empirical estimator for the squared Hellinger distance between two continuous distributions, which almost surely converges. We show that the divergence estimation problem can be solved directly using the empirical CDF and does not need the intermediate step of estimating the densities. We illustrate the proposed estimator on several one-dimensional probability distributions. Finally, we extend the estimator to a family of estimators for the family of α-divergences, which almost surely converge as well, and discuss the uniqueness of this result. We demonstrate applications of the proposed Hellinger affinity estimators to approximately bounding the Neyman–Pearson regions. Full article
(This article belongs to the Section Information Theory, Probability and Statistics)
Show Figures

Figure 1

18 pages, 12268 KiB  
Article
Optimal Automatic Wide-Area Discrimination of Fish Shoals from Seafloor Geology with Multi-Spectral Ocean Acoustic Waveguide Remote Sensing in the Gulf of Maine
by Kaklamanis Eleftherios, Purnima Ratilal and Nicholas C. Makris
Remote Sens. 2023, 15(2), 437; https://doi.org/10.3390/rs15020437 - 11 Jan 2023
Cited by 3 | Viewed by 2128
Abstract
Ocean Acoustic Waveguide Remote Sensing (OAWRS) enables fish population density distributions to be instantaneously quantified and continuously monitored over wide areas. Returns from seafloor geology can also be received as background or clutter by OAWRS when insufficient fish populations are present in any [...] Read more.
Ocean Acoustic Waveguide Remote Sensing (OAWRS) enables fish population density distributions to be instantaneously quantified and continuously monitored over wide areas. Returns from seafloor geology can also be received as background or clutter by OAWRS when insufficient fish populations are present in any region. Given the large spatial regions that fish inhabit and roam over, it is important to develop automatic methods for determining whether fish are present at any pixel in an OAWRS image so that their population distributions, migrations and behaviour can be efficiently analyzed and monitored in large data sets. Here, a statistically optimal automated approach for distinguishing fish from seafloor geology in OAWRS imagery is demonstrated with Neyman–Pearson hypothesis testing which provides the highest true-positive classification rate for a given false-positive rate. Multispectral OAWRS images of large herring shoals during spawning migration to Georges Bank are analyzed. Automated Neyman-Pearson hypothesis testing is shown to accurately distinguish fish from seafloor geology through their differing spectral responses at any space and time pixel in OAWRS imagery. These spectral differences are most dramatic in the vicinity of swimbladder resonances of the fish probed by OAWRS. When such significantly different spectral dependencies exist between fish and geologic scattering, the approach presented provides an instantaneous, reliable and statistically optimal means of automatically distinguishing fish from seafloor geology at any spatial pixel in wide-area OAWRS images. Employing Kullback–Leibler divergence or the relative entropy in bits from Information Theory is shown to also enable automatic discrimination of fish from seafloor by their distinct statistical scattering properties across sensing frequency, but without the statistical optimal properties of the Neyman–Pearson approach. Full article
Show Figures

Figure 1

Back to TopTop