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Abstract: We present an empirical estimator for the squared Hellinger distance between two con-
tinuous distributions, which almost surely converges. We show that the divergence estimation
problem can be solved directly using the empirical CDF and does not need the intermediate step
of estimating the densities. We illustrate the proposed estimator on several one-dimensional prob-
ability distributions. Finally, we extend the estimator to a family of estimators for the family of
α-divergences, which almost surely converge as well, and discuss the uniqueness of this result. We
demonstrate applications of the proposed Hellinger affinity estimators to approximately bounding
the Neyman–Pearson regions.
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1. Introduction

We present an empirical estimator for the squared Hellinger distance between two
continuous distributions. The work is a direct extension of Perez-Cruz [1] where they
provided an empirical KL divergence estimator. Their work is built upon previous works
on divergence estimators such as [2–6]. Similar to their estimator, given two samples from
two distributions, our estimator does not need to estimate the probability density functions
explicitly before estimating the squared Hellinger distance between the two distributions,
which makes it simple and fast. We show that the estimator converges to the true squared
Hellinger distance almost surely as the sample size increases. We then extend our estimator
to the family of α-divergences, to which the squared Hellinger distance belongs. For each
of the estimators, we can obtain a reverse estimator using the other direction of the two
data samples, and we can also obtain a symmetric estimator by averaging the two one-
sided estimators. We present several numerical examples to show the convergence of our
estimators. Our newly proposed estimators can be used efficiently to approximate the
adjacency of two data samples, leading to various applications in many fields of research.

2. Preliminaries on Divergences between Probability Distributions

Recall that the definition of squared Hellinger distance [7] is (for univariate continuous
distributions):

H2(P, Q) =
1
2

∫
x

(√
p(x)−

√
q(x)

)2
dx.

It is symmetric and always bounded between 0 and 1.
Additionally, recall the definition of Kullback–Leibler divergence [8] is (for univariate

continuous distributions):

DKL(P||Q) =
∫

x
p(x) log

p(x)
q(x)

dx.
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KL divergence and the squared Hellinger distance both belong to a family of f-
divergences, which are central to information theory and statistics. Compared with KL
divergence, the squared Hellinger distance is symmetric, and Hellinger distance forms
a bounded metric between 0 and 1 on the space of probability distributions. Hellinger
distance is related to total variation distance as:

H2(P, Q) ≤ TVD(P, Q) ≤
√

2H(P, Q),

where total variation distance (TVD) is defined as:

TVD(P, Q) =
1
2

∫
x
|p(x)− q(x)|dx.

The squared Hellinger distance is also closely related to KL divergence and can be bounded by:

2H2(P, Q) ≤ DKL(P||Q).

It is also a known result that KL divergence is stronger than Hellinger distance in
the sense that convergence in KL divergence implies convergence in Hellinger distance,
which further implies convergence in total variation distances. Therefore, Hellinger distance
represents a middle ground between KL divergence and total variation distance; it is weaker
than KL divergence but stronger than total variation distance in terms of convergence.
As shown before, Hellinger distance has close connections to the total variation distance,
which is exactly what inference depends on (KL divergence does not admit a useful lower
bound on the TVD). It has another attractive property compared with KL divergence, which
is the fact that the squared Hellinger distance is always bounded between zero and one
for probability distributions that may or may not have the same support, whereas the
KL divergence becomes infinite for probability distributions of different supports. In fact,
KL divergence can be unbounded for probability distributions supported on the real line.
For example, consider P to be the standard Cauchy distribution and Q to be the standard
normal distribution, then DKL(P||Q) diverges to infinity. Hence, an empirical estimator for
KL divergence does not provide meaningful estimates in such a case, while the squared
Hellinger distance is always bounded. Due to these desirable properties, we focus mainly
on the squared Hellinger distance in this work. The squared Hellinger distance is a member
of the family of α-divergences (up to a scaling factor), which are defined in Cichocki and
Amari [9] for α ∈ (0, 1) as,

Dα
A(P||Q) =

1
α
+

1
1− α

− 1
α(1− α)

∫
x
(

q(x)
p(x)

)1−α p(x)dx.

The α-divergence can also be related to TVD through the following inequalities, similar to
squared Hellinger distance up to a scaling factor (see for example [10–12]),

α(1− α)Dα
A(P||Q) ≤ TVD(P, Q) ≤

√
Dα

A(P||Q)

2
.

3. Review of Empirical Sample-Based Kullback–Leibler Divergence Estimator of
Continuous Distributions

Let X = {xi}n
i=1,X ′ = {x′j}m

j=1 be iid samples from P and Q in increasing order. Recall
that the definition of the empirical CDFs of P and Q are, respectively,

Pe(x) =
1
n

n

∑
i=1

U(x− xi); Qe(x) =
1
m

m

∑
j=1

U(x− x′j),

where U(x) is a unit-step function with U(0) = 0.5. The continuous piece-wise linear
interpolation of the empirical CDF of P is denoted as Pc(x). It is zero for any point smaller
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than a joint lower bound x0 < in f {X ,X ′} of the data samples from P, Q, and is one for
anything greater than or equal to a joint upper bound xn+1 > sup{X ,X ′} of the data
samples from P, Q; everywhere in the middle, it is defined as:

Pc(x) = aix + bi, xi−1 < x < xi,

where coefficients ai, bi are set so that Pc(x) matches the values of Pe(x) at the sampled
values xi, i = 1, . . . , n. Similarly, we can define the interpolated empirical CDF for Q,
denoted as Qc(x). These empirical CDFs converge uniformly and are independent of the
distribution of their CDFs.

Perez-Cruz [1] proposed an empirical KL estimator:

D̂(P||Q) =
1
n

n

∑
i=1

log
δPc(xi)

δQc(xi)
,

where δPc(xi) = (Pc(xi)− Pc(xi − ε))/ε for any ε < mini{xi − xi−1} denotes the left slope
of Pc at xi and δQc(xi) denotes the left slope of Qc at xi. Here, n = |X | and xi are the
samples from the P distribution. Ref. [1] showed that D̂(P||Q)− 1 → D(P||Q), almost
surely. For this 1-D data setting, an experiment showing the convergence of their estimator
is shown in Figure 1 where we plotted estimated values against increasing sample sizes,
where P, Q are taken to be normal distributions N(0, 1) and N(1, 1) respectively.

Figure 1. Empirical KLD estimator for two normal distributions.

It is worth mentioning that the major innovation and strength of these types of em-
pirical estimators is the fact that there are no convergent density estimators required in
the process of estimating the desired divergences. In fact, only the empirical CDF is used
and the density model being used in the estimator is completely based on the slopes of the
piecewise linear interpolation of the empirical CDF. This empirical density model is far
from being convergent as we can see from the following figures in Figure 2, which shows
the calculated slopes (in blue) for N = 10, 100, 1000, 10,000 data samples from a normal
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distribution against the ground-truth normal densities (in red), plotted in log scale. Clearly,
the empirical density model does not converge to the true densities.

Figure 2. Failure of empirical PDF estimator.

Perez-Cruz [1] also provided an empirical KL estimator for multivariate distribution
samples. The estimator is based on a nearest-neighbor approach. For each sample xi in X ,
where the dimension of the sample is d, let:

p̂k(xi) =
k

n− 1
Γ(d/2 + 1)
πd/2rk(xi)d , q̂k(xi) =

k
m

Γ(d/2 + 1)
πd/2sk(xi)d ,

where rk(xi), sk(xi) are, respectively, the Euclidean distance to the k-th nearest neighbor of
xi in X \ xi and X ′, and πd/2

Γ(d/2+1) is the volume of the unit ball in Rd. Ref. [1] continued to

show that the random variable p(x)
p̂k(x) converges to an independent Gamma(k,k) random

variable which has mean 1 and variance 1
k for each selected k = 1, 2, 3, . . ., where x is

sampled from P. Therefore, they proposed the following estimator:

D̂k(P||Q) =
1
n

n

∑
i=1

log
p̂k(xi)

q̂k(xi)
=

d
n

n

∑
i=1

log
rk(xi)

sk(xi)
+ log

m
n− 1

.

It was shown that, since 1
n ∑n

i=1 log p(xi)
p̂k(xi)

and, consequently, 1
n ∑n

i=1 log q(xi)
q̂k(xi)

converges to:

1
(k− 1)!

∫ ∞

0
(kx)k−1 log xe−kxkdx =

1
(k− 1)!

∫ ∞

0
zk−1 log ze−zdz− log k,

then D̂k(P||Q)→ D(P||Q) almost surely.
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4. Empirical Squared Hellinger Distance Estimator of Continuous Distributions
4.1. Estimator for 1D Data

Following Perez-Cruz [1], we have defined a similar estimator for Hellinger affinity
using empirical CDFs. Let X = {xi}n

i=1,X ′ = {x′j}m
j=1 be iid samples from P and Q in in-

creasing order. Recall that the definition of the empirical CDFs of P and Q are, respectively,

Pe(x) =
1
n

n

∑
i=1

U(x− xi),

where U(x) is a unit-step function with U(0) = 0.5. The continuous piece-wise linear
interpolation of the empirical CDF of P (and Q) is denoted as Pc(x) (and Qc(x), respec-
tively). It is zero for anything smaller than a joint lower bound x0 < in f {X ,X ′} of the
data samples from P, Q, and is one for anything greater than or equal to a joint upper
bound xn+1 > sup{X ,X ′} of the data samples from P, Q; everywhere in the middle, it is
defined as:

Pc(x) = aix + bi, xi−1 < x < xi,

where coefficients ai, bi are set so that Pc(x) matches the values of Pe(x) at the sampled
values xi, i = 1, . . . , n. Qc(x) is defined similarly. These empirical CDFs converge uniformly
and are independent of the distribution of their CDFs.

Our estimator for the squared Hellinger distance is based on estimating the Hellinger
affinity, which is directly related to the quantity of interest by:

A(P, Q) = 1− H2(P, Q) =
∫

x

√
p(x)q(x)dx.

The new estimator for Hellinger affinity is

Â(P, Q) =
1
n

n

∑
i=1

√
δQc(xi)

δPc(xi)
,

where δPc(xi) = (Pc(xi)− Pc(xi − ε))/ε for any ε < mini{xi − xi−1} denotes the left slope
of Pc at xi and, similarly, δQc(xi) denotes the left slope of Qc at xi.

We next claim and prove that Â converges to a scalar multiple of the true Hellinger
affinity Â→ π

4 A. To justify the use of this bias correction constant we need to prove that it
results from terms we get from rewriting the estimator:

Â(P, Q) =
1
n

n

∑
i=1

√
∆Qc(x′mi)/∆x′mi

∆Pc(xi)/∆xi

=
1
n

n

∑
i=1

√
∆Q(x′mi)/∆x′mi

∆P(xi)/∆xi

√
∆Qc(x′mi)

∆Q(x′mi)

√
∆P(xi)

∆Pc(xi)
=

1
n

n

∑
i=1

√
∆Q(x′mi)/∆x′mi

∆P(xi)/∆xi

√
n∆P(xi)√

m∆Q(x′mi)
,

where ∆xi = xi − xi−1, ∆Pc(xi) = Pc(xi) − Pc(xi−1), ∆P(xi) = P(xi)− P(xi−1), ∆x′mi =
min{x′j|x′j ≥ xi} −max{x′j|x′j < xi}, ∆Qc(x′mi) = Qc(min{x′j|x′j ≥ xi})− Qc(max{x′j|x′j <
xi}) and ∆Q(x′mi) = Q(min{x′j|x′j ≥ xi})−Q(max{x′j|x′j < xi}).

Notice that the first (square root) term in the sum converges almost surely to
√

q(xi)
p(xi)

. We

need to show that the above empirical sum converges almost surely to C
∫

x

√
p(x)q(x)dx,

where the constant C = π
4 is derived from the second term, using similar arguments as

Perez-Cruz [1] through waiting time distributions between two consecutive samples from a
uniform distribution between 0 and 1.
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We outline the proof for the constant term below. Similar to Perez-Cruz [1], we know
that, given {xi}n

i=1 ∼ P, n∆P(xi) ∼ Exp(1) and is independent of P (similarly for Q). With
this argument, the last expression for Â(P, Q) can be rewritten as (where zi = n∆P(xi))

Â(P, Q) =
1
n

n

∑
i=1

√
∆Q(x′mi)/∆x′mi

∆P(xi)/∆xi

√
zi√

m∆Q(x′mi)

a.s.→ (
1
n

n

∑
i=1

√
∆Q(x′mi)/∆x′mi

∆P(xi)/∆xi

√
zi) ∗ (

1
n

n

∑
i=1

1√
m∆Q(x′mi)

).

The first sum converges almost surely to:

1
n

n

∑
i=1

√
∆Q(x′mi)/∆x′mi

∆P(xi)/∆xi

√
zi

a.s.→
∫

x

∫ ∞

z=0

√
q(x)
p(x)
√

ze−z p(x)dzdx =

√
π

2
A(P, Q).

The second sum can be rewritten as:

1
n

n

∑
i=1

1√
m∆Q(x′mi)

=
1
n

m

∑
j=1

n∆Pe(x′j)√
m∆Q(x′j)

=
1
m

m

∑
j=1

∆Pe(x′j)/∆x′j
∆Q(x′j)/∆x′j

m∆Q(x′j)√
m∆Q(x′j)

.

The last expression converges almost surely to:

1
m

m

∑
j=1

∆Pe(x′j)/∆x′j
∆Q(x′j)/∆x′j

m∆Q(x′j)√
m∆Q(x′j)

a.s.→
∫

x

∫ ∞

z=0

pe(x)
q(x)

√
ze−zq(x)dzdx =

√
π

2

∫
x

pe(x)dx =

√
π

2
.

Notice here that pe(x) is a density model but does not need to converge to p(x) for the
above expression to converge to the desired constant.

Combining all previous results, we have shown that Â(P, Q) converges almost surely to:

Â(P, Q)
a.s.→
√

π

2

√
π

2
A(P, Q) =

π

4
A(P, Q).

Hence, we obtained the desired constant C = π
4 ≈ 0.785. The final estimator for squared

Hellinger distance is Ĥ2(P, Q) = 1− 4Â(P,Q)
π .

Notice that Hellinger distance is a symmetric distance metric for any distributions P
and Q, hence the estimator above is only one side of the story. Following exactly the same
arguments, we can show that the opposite direction estimator,

Â(Q, P) =
1
m

m

∑
j=1

√√√√ δPc(x′j)

δQc(x′j)
,

also converges almost surely to π
4 A(Q, P), and since A(P, Q) = A(Q, P) we can obtain a

symmetric estimator of Hellinger affinity that converges almost surely to π
4 A(Q, P):

ÂS(P, Q) =
Â(P, Q) + Â(Q, P)

2
.

Therefore, we can construct a corresponding estimator for the squared Hellinger
distance as:

Ĥ2
S(P, Q) = 1− 4ÂS(P, Q)

π
,

which enjoys all of the properties shown above for the two estimators separately. Since
the symmetric version uses more information from the two samples, it is supposed to be
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able to provide better estimates than the two single-sided estimators in terms of the rate
of convergence.

4.2. Numerical Experiments

We show asymptotic convergence of the new estimator Ĥ2(P, Q) = 1− 4Â(P,Q)
π , and

its symmetric version, to the true H2 value as the data sample size grows in the below exper-
iments. In each of the experiments, we took two distributions of the same family and com-
pared the estimated squared Hellinger distance value against the ground truth value. We
plotted mean estimated values for sample size N = M = 10, 32, 100, 316, 1000, 3162, 10,000
(x-axis) used for each pair of distributions over 100 instances, and we also plotted the 95%
confidence interval of the estimates. For each experiment, the squared Hellinger distance
estimators Ĥ2(P, Q), Ĥ2(Q, P) are plotted in red and blue, and the symmetric squared
Hellinger distance estimator Ĥ2

S(P, Q) is plotted in purple. We also recall the fact that
when P, Q are taken to be normal distributions N(µ1, σ2

1 ), N(µ2, σ2
2 ), the squared Hellinger

distance has an analytic form:

H2(P, Q) = 1−
√

2σ1σ2

σ2
1 + σ2

2
e
− 1

4
(µ1−µ2)

2

σ2
1+σ2

2 .

In the first experiment (Figure 3), P, Q are taken to be normal distributions N(0, 4) and
N(1, 1), respectively. In the second experiment P, Q are taken to be normal distributions
N(0, 1) and N(2, 1), respectively.

(a) Test 1: Two normal distributions. (b) Test 2: Two normal distributions.

Figure 3. Empirical squared Hellinger estimator tests between 1D normal distributions.

In the third experiment (Figure 4), P, Q are taken to be normal distributions N(0, 1)
and N(0.01, 1), respectively. In the fourth experiment, P, Q are taken to be exponential
distributions Exp(1) and Exp(2), respectively.

In the fifth experiment (Figure 5), P, Q are taken to be uniform distributions U(0, 1)
and U(0, 2), respectively. In the sixth experiment, P, Q are taken to be uniform distributions
U(0, 1) and U(0.5, 1.5), respectively. Notice that the squared Hellinger distance is well-
defined for distributions of different support.
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(a) Test 3: P = N(0, 1), Q = N(0.01, 1). (b) Test 4: P = Exp(1), Q = Exp(2).

Figure 4. Empirical squared Hellinger estimator tests between 1D distributions.

(a) Test 5: P = U(0, 1), Q = U(0, 2) (b) Test 6: P = U(0, 1), Q = U(0.5, 1.5)

Figure 5. Empirical squared Hellinger estimator tests between 1D distributions.

In the last two experiments (Figure 6), we considered two distributions from different
distribution families. Here, P = Cauchy(0, 1) is the standard Cauchy distribution. In the
seventh experiment, Q = N(1, 1) and in the last experiment Q = N(0, 1). The true squared
Hellinger distances are computed using numerical integration.

We can observe from the previous experiments that, depending on the distributions,
either the estimator Ĥ2(P, Q) or the reverse direction estimator Ĥ2(Q, P) can turn out to
be better, which is a consequence of our choice to take the left slope of the empirical CDF
so the relative location of the two distributions will determine which estimator is more
accurate. The symmetric squared Hellinger estimator provides a middle ground between
the two one-sided estimators and it also exhibits smaller variances.
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(a) Test 7: P = Cauchy(0,1), Q = N(1, 1). (b) Test 8: P = Cauchy(0,1), Q = N(0, 1).

Figure 6. Empirical squared Hellinger estimator tests between 1D Cauchy and normal distributions.

As mentioned before, the proposed estimator does not use the information of the
underlying distribution and does not need to estimate the density first before estimating the
squared Hellinger distance. As a comparison with an estimator that knows the distribution,
we performed experiments with Gaussian distributions where we could use the sample
mean and sample variance to estimate the distributions and then compute the squared
Hellinger distance analytically using the estimated parameters. The estimator is constructed
as follows,

Ĥ2
naive(P, Q) = 1−

√
2σ̂1σ̂2

σ̂2
1 + σ̂2

2
e
− 1

4
(µ̂1−µ̂2)

2

σ̂2
1+σ̂2

2 ,

where µ̂1, σ̂1, µ̂2, σ̂2 are sample estimates of mean and standard deviation from the two
datasets. This estimator knows extra information about the data coming from Gaussian dis-
tributions.

However, as we can see from the plots in Figure 7, the proposed squared Hellinger
distance estimator performs similarly to the estimator that knows the distribution family.
In the first experiment, the two distributions are N(0, 4), N(2, 4). In the second experiment,
the two distributions are N(0, 1), N(2, 1). For both plots, we plotted the proposed sym-
metric squared Hellinger distance estimator in red and the naive estimator using sampled
parameters in blue. The upper bound and lower bound of each estimator, performed over
100 iterations, are plotted in dashed lines.

Finally, we consider the setting in Test 8, where P is a standard Cauchy distribution and
Q is a standard normal distribution, and we compare the behavior of the empirical squared
Hellinger estimator Ĥ2(P, Q) with the empirical KL divergence estimator D̂(P||Q) as in [1].
As mentioned in the discussion in Section 2, for this case, the KL divergence diverges
to infinity while the squared Hellinger distance is bounded. With the same experiment
setup, we plotted the resulting divergence estimates and confidence intervals for both KL
divergence and squared Hellinger distance in Figure 8, where the ground truth H2(P, Q)
value (approximated by numerical integration) is plotted in black and the ground truth
DKL(P||Q) value is infinity.
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(a) Comparison 1: P = N(0,4), Q = N(2, 4). (b) Comparison 2: P = N(0,1), Q = N(2, 1)).

Figure 7. Comparisons between empirical and naive estimators for 1D normal distributions.

Figure 8. Comparison of empirical DKL estimator against empirical H2 estimator, P = Cauchy(0, 1),
Q = N(0, 1).

As we can observe from Figure 8, while the empirical squared Hellinger estimator
converges to the ground truth value quickly, the empirical KL divergence estimator cannot
converge to some value due to the fact that the ground truth value is infinity. This justifies
the desirability of considering the squared Hellinger distance, which is always bounded.
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4.3. Estimator for Vectorial Data

Utilizing the results proved for the vectorial data case in [1], we propose the following
estimator for squared Hellinger distance in multivariate cases (for a chosen k). Similar to
the definitions in [1], let the kNN density estimator be defined as:

p̂k(xi) =
k

n− 1
Γ(d/2 + 1)
πd/2rk(xi)d , q̂k(xi) =

k
m

Γ(d/2 + 1)
πd/2sk(xi)d ,

where rk(xi), sk(xi) are, respectively, the Euclidean distance to the k-th nearest neighbor of
xi in X \ xi and X ′. Let:

Âk(P, Q) =
1
n

n

∑
i=1

√
q̂k(xi)

p̂k(xi)
=

1
n

n

∑
i=1

√
(n− 1)rk(xi)d

msk(xi)d

Âk(P, Q) =
1
n

n

∑
i=1

√
q(xi)

p(xi)

√
q̂k(xi)

q(xi)

√
p(xi)

p̂k(xi)
;

since p(x)
p̂k(x) , q(x)

q̂k(x) are independent Gamma(k,k) random variables that are also independent

from P, Q, we conclude that Âk(P, Q) converges almost surely to:

Âk(P, Q)→ A(P, Q)
√

k
∫ ∞

0
z−1/2 zk−1e−z

(k− 1)!
dz

1√
k

∫ ∞

0
z1/2 zk−1e−z

(k− 1)!
dz

=
Γ(k− 1

2 )

(k− 1)!
Γ(k + 1

2 )

(k− 1)!
A(P, Q).

So, Âk(P, Q) converges almost surely to the true Hellinger affinity up to a constant mul-
tiplier, similar to the 1D case. Therefore, we propose the following estimator for squared
Hellinger distance, which converges almost surely to the true squared Hellinger distance:

Ĥ2
k (P, Q) = 1− Âk(P, Q)(k− 1)!(k− 1)!

Γ(k− 1
2 )Γ(k +

1
2 )

→ H2(P, Q).

Similar to the 1D case, we can extend this estimator to a symmetric version that also
shares the desired convergence properties:

Ĥ2
k,S(P, Q) =

Ĥ2
k (P, Q) + Ĥ2

k (Q, P)
2

.

4.4. Numerical Experiments for Vectorial Data

Similar to the experiment setting in Section 4.2, we show the convergence of the
proposed estimators in Section 4.3. Sample size N = M = 10, 32, 100, 316, 1000, 3162
(plotted on the x-axis) is used for each pair of distributions. The analytical formula for the
squared Hellinger distance for two multivariate Gaussians N(µ1, Σ1), N(µ2, Σ2) is:

H2(P, Q) = 1− |Σ1|1/4|Σ2|1/4

| 12 Σ1 +
1
2 Σ2|1/2

e−
1
8 (µ1−µ2)

T( 1
2 Σ1+

1
2 Σ2)

−1(µ1−µ2).

In the experiment in Figure 9, we picked 2D normal distributions P and Q with
µ1 = (0, 0)T , µ2 = (1, 1)T , Σ1 = Σ2 = I2. For the proposed k-nearest neighbor estimator,
we picked k = 5. The performance of the proposed estimators and a comparison with the
naive estimator are plotted below. The naive estimator estimates the mean and covariance
based on the data samples and estimates the squared Hellinger distance based on the
analytic formula:
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Ĥ2
naive(P, Q) = 1− |Σ̂1|1/4|Σ̂2|1/4

| 12 Σ̂1 +
1
2 Σ̂2|1/2

e−
1
8 (µ̂1−µ̂2)

T( 1
2 Σ̂1+

1
2 Σ̂2)

−1(µ̂1−µ̂2).

From these results we can observe that, similar to the 1D cases, the symmetric estimator
seems to perform the best and is comparable to the naive estimator in terms of convergence.

(a) Empirical squared Hellinger estimator. (b) Comparison with naive estimator

Figure 9. Vectorial squared Hellinger estimator (k = 5) tests on 2D normal distributions.

In general, a larger k leads to a smaller variance in the proposed estimator for mul-
tivariate data. To balance the convergence rate with computational cost, we can select k
to be around 4 to 6 which converges faster than a smaller k and is also easy to compute.
This behavior is shown in Figure 10, where we compared the performance of the proposed
estimator using k = 2, 3, 4, 5, 6 for the same experiment setting as above.

Figure 10. Comparison of kNN-based squared Hellinger distance estimators.

Another test we conducted was to check if the squared Hellinger distance estimate
behavior in a non-asymptotic sense is similar for two pairs of concentric Gaussians that
have the same squared Hellinger distance. For this experiment, we picked the first pair
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of Gaussians to be N(0, I) and N(0, 4I), and the second pair of Gaussians to be N(0, 1
2 I)

and N(0, 2I). The squared Hellinger distance between each pair of Gaussians is 0.2 and,
since these two pairs correspond to a single coordinate transformation on the sample space,
we expect similar behavior of the estimator in terms of convergence on both pairs. The
result is shown in Figure 11. As expected, the empirical estimator for vectorial data has
very similar convergence behavior for each of the two pairs of Gaussians to the same
ground-truth value.

Figure 11. Two pairs of concentric Gaussians with invariant squared Hellinger distance.

5. Empirical α-Divergence Estimator of Continuous Distributions
5.1. Estimator for 1D Data

We generalized the results obtained before to a family of α-divergences to which
the squared Hellinger distance belongs. Following Cichoki and Amari [9], we define an
α-divergence between two probability distributions as:

Dα
A(P||Q) =

1
α(α− 1)

∫
x

(
pα(x)q1−α(x)− αp(x) + (α− 1)q(x)

)
dx.

We want to obtain an empirical estimator similar to that in Section 3 that uses only the em-
pirical CDFs of P and Q and estimates this quantity directly for any α ∈ (0, 1). Notice that
for α = 0.5, Dα

A(P||Q) = 4H2(P, Q), which corresponds to the squared Hellinger distance.
Notice that we can rewrite the α-divergence above as:

Dα
A(P||Q) =

1
α
+

1
1− α

− 1
α(1− α)

∫
x
(

q(x)
p(x)

)1−α p(x)dx.

Clearly, we are interested in the last quantity, so we only need to have an estimator for that
term that converges almost surely.
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For this purpose, let us define an estimator:

Âα(P||Q) =
1
n

n

∑
i=1

(
δQc(xi)

δPc(xi)
)1−α.

Notice that, in the general cases, the α-divergence is not symmetric.
Following similar procedures as in Section 3, we can rewrite the estimator as:

Âα(P||Q) =
1
n

n

∑
i=1

(
∆Q(x′mi/∆x′mi)

∆P(xi)/∆xi
)1−α(

n∆P(xi)

m∆Q(x′mi)
)1−α

=
1
n

n

∑
i=1

(
∆Q(x′mi/∆x′mi)

∆P(xi)/∆xi
)1−α(

zi
m∆Q(x′mi)

)1−α.

This sum converges almost surely to (since the exponential waiting distributions are
independent of the data distribution):

(
1
n

n

∑
i=1

(
∆Q(x′mi/∆x′mi)

∆P(xi)/∆xi
)1−αz1−α

i )(
1
m

m

∑
j=1

(
1

m∆Q(x′j)
)1−αm∆Q(x′j)

∆Pe(x′j)

∆Q(x′j)
).

Following the same arguments as in Section 3, we can show that the proposed estimator
converges almost surely to:

Âα(P||Q)
a.s.→
∫

x
(

q(x)
p(x)

)1−α p(x)dx
∫ ∞

z=0
z1−αe−zdz

∫ ∞

z=0
zαe−zdz

∫
x

pe(x)dx

= C1−αCα

∫
x
(

q(x)
p(x)

)1−α p(x)dx,

where we define the constants C1−α =
∫ ∞

z=0 z1−αe−zdz = Γ(2− α), Cα =
∫ ∞

z=0 zαe−zdz =
Γ(1 + α), ∀α ∈ (−1, 2).

Therefore, we know that the estimator

D̂α
A(P||Q) =

1
α
+

1
1− α

− 1
α(1− α)

Âα(P||Q)

CαC1−α

converges almost surely to the true α-divergence value, Dα
A(P||Q).

Although the α-divergence is not symmetric, it has the property that

Dα
A(P||Q) = D1−α

A (Q||P).

So, given the same two sample data sets, we can get another estimator for the same quantity

based on D̂1−α
A (Q||P) = 1

α + 1
1−α −

1
α(1−α)

Â1−α(Q||P)
CαC1−α

, where we are estimating based on the

sampling distribution from Q instead of P. Since D̂α
A(P||Q), D̂1−α

A (Q||P) converges to the
same divergence value, we can again create a symmetric estimator based on averaging these

two estimators D̂α
A,S(P||Q) =

D̂α
A(P||Q)+D̂1−α

A (Q||P)
2 and it is expected to perform similarly if

not better. Lastly, notice that, when α = 0.5, we obtain Cα = C1−α =
√

π
2 and D̂0.5

A (P||Q) =

4(1− 4
π Â0.5(P||Q)), which corresponds to the squared Hellinger estimator we have seen

in Section 3, scaled by 4.

5.2. Numerical Experiments

We show asymptotic convergence of the new estimator D̂α
A(P||Q), and its symmetric

version, to the true α-divergence value as the data sample size grows in the below exper-
iments. In each of the below experiments, we took two distributions of the same family
and compared the estimated α-divergence value against the ground truth value. Mean esti-
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mated values for sample size N = M = 10, 32, 100, 316, 1000, 3162, 10,000, 31,623 (plotted
on the x-axis) used for each pair of distributions over 100 instances and we also plotted the
95% confidence interval of the estimates. For each experiment, the α-divergence estima-
tors D̂α

A(P||Q), D̂1−α
A (Q||P) are plotted in red and blue, and the symmetric α-divergence

estimator D̂α
A,S(P||Q) is plotted in purple.

In the first experiment, P, Q are taken to be normal distributions N(0, 4) and N(1, 1), re-
spectively, and α = 0.6. In the second experiment, P, Q are taken to be normal distributions
N(0, 1) and N(2, 1), respectively, and α = 0.4. The results are plotted in Figure 12. Notice
that for two normal distributions P ∼ N(µ1, σ2

1 ), Q ∼ N(µ2, σ2
2 ), we have an analytical

formula for the α-divergence:

Dα
A(P||Q) =

1
α(1− α)

1−
σα

2 σ1−α
1√

ασ2
2 + (1− α)σ2

1

e
− α(1−α)

ασ2
2+(1−α)σ2

1

(µ1−µ2)
2

2

.

(a) Test 1: α = 0.6, P = N(0, 4), Q = N(1, 1). (b) Test 2: α = 0.4, P = N(0, 1), Q = N(2, 1).

Figure 12. α-divergence estimator tests on 1D normal distributions.

Again, we provide a comparison with an estimator that knows the distribution family.
We performed experiments with Gaussian distributions where we could use the sample
mean and sample variance to estimate the distributions and then compute the α-divergences
analytically using the estimated parameters. The estimator is constructed as follows:

D̂α
A,naive(P||Q) =

1
α(1− α)

1−
σ̂α

2 σ̂1−α
1√

ασ̂2
2 + (1− α)σ̂2

1

e
− α(1−α)

ασ̂2
2+(1−α)σ̂2

1

(µ̂1−µ̂2)
2

2


where µ̂1, σ̂1, µ̂2, σ̂2 are sample estimates of mean and standard deviation from the two
datasets. This estimator knows extra information about the data coming from Gaussian
distributions. However, as we can see from the plots in Figure 13, the proposed α-divergence
estimator performs similarly to the estimator that knows the distribution family.

In the first experiment, the two distributions are N(0, 4), N(1, 1) and α = 0.6. In the
second experiment, the two distributions are N(0, 1), N(2, 1) and α = 0.4. For both plots,
we plotted the proposed symmetric α-divergence estimator in red and the naive estimator
using sampled parameters in blue. The upper bound and lower bound of each estimator,
performed over 100 iterations, are plotted in dashed lines.
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(a) Comparison 1: α = 0.6, P = N(0, 4), Q = N(1, 1). (b) Comparison 2: α = 0.4, P = N(0, 1), Q = N(2, 1).

Figure 13. Comparisons between empirical and naive estimators for 1D normal distributions.

5.3. Estimator for Vectorial Data

Similarly to Section 4.3, we propose α-divergence estimators for samples from multi-
variate distributions. For this purpose, let us define:

Âα
k (P||Q) =

1
n

n

∑
i=1

(
q̂k(xi)

p̂k(xi)
)1−α.

Using similar arguments, we can show that this estimator converges almost surely to:

Âα
k (P||Q)→ (k1−α

∫ ∞

0
zα−1 zk−1e−z

(k− 1)!
dz)(kα−1

∫ ∞

0
z1−α zk−1e−z

(k− 1)!
dz)

∫
x
(

q(x)
p(x)

)1−α p(x)dx

=
Γ(k + α− 1)
(k− 1)!

Γ(k− α + 1)
(k− 1)!

∫
x
(

q(x)
p(x)

)1−α p(x)dx.

Therefore, we propose the following estimator for α-divergences, which converges
almost surely:

D̂α
A,k(P||Q) =

1
α
+

1
1− α

− 1
α(1− α)

Âα
k (P||Q)(k− 1)!(k− 1)!

Γ(k + α− 1)Γ(k− α + 1)
→ Dα

A(P||Q).

Similarly, we can extend this estimator to a symmetric version, for any fixed k:

D̂α
A,k,S(P||Q) =

D̂α
A,k(P||Q) + D̂1−α

A,k (Q||P)
2

.

As a remark, for the vectorial case, the above kNN density-based empirical estimator
for α-divergences (and the squared Hellinger distance in Section 4.3 as a special case)
agree with the estimators proposed in [13], although the proof of convergence differs.
Nonetheless, the univariate estimators we proposed in Sections 4.1 and 5.1 are different
from trivial reductions of the kNN-based estimators in Sections 4.3 and 5.3 when taking
d = 1 and k = 1.

6. Limitation of the Proposed Methodologies and Uniqueness of the α-Divergences
6.1. Failure of a Similar Estimator for Total Variation Distance

As we have shown so far, by using the trick of waiting time distributions, we can
bias-correct an empirical mean type estimator to produce an almost-sure convergence
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estimator for KL divergence, squared Hellinger distance, and in general the α-divergences.
However, the same kind of trick does not work for other f-divergences that have an f-
function without certain desired properties such as f (ab) = f (a) + f (b) for KL divergence
or f (ab) = f (a) f (b) for Hellinger affinity, which we shall discuss in more detail later. As a
simple demonstration, consider the Total Variation Distance (TVD), which, for two continu-
ous distributions P and Q, is defined as:

TVD(P, Q) =
1
2

∫
x
|p(x)− q(x)|dx.

Notice that the TVD is always bounded between 0 and 1.
We considered paired distributions in two different families in 1D, namely normal

distributions and exponential distributions. For different choices of parameters, we plotted
the performance of a biased estimator using the empirical CDFs against the true TVD value.
For every parameter setting, we looked at the case where N = M = 10,000 and averaged
over 100 instances. The estimator is defined as:

T̂VD(P, Q) =
1
n

n

∑
i=1

1
2
| δQc(xi)

δPc(xi)
− 1|

Specifically, for the normal distributions, we fixed µ1 = 0, σ1 = 1, σ2 = 1 and varied
µ2 from 0 to 5. For the exponential distributions, we fixed λ1 = 0.1 and varied λ2 from
0.1 to 7. This generated a range of true TVD values that are spaced between 0 and 1 for
each distribution family. Figure 14 plots the biased estimator values (on the y-axis) against
true TVD values (on the x-axis) for pairs of normal distributions P, Q in blue and pairs
of exponential distributions P, Q in red. The confidence intervals are also plotted. We
observe that, for the same true TVD values, the biased estimator produced different values
for different distribution families, where the relationship looks nonlinear and depends on
the distribution family itself. This is an indication that the proposed estimator cannot be
uniformly corrected with a simple additive and/or multiplicative constant as we performed
for squared Hellinger distance (and in general α-divergences) and [1] for KL divergences.
Therefore, we conclude that, so far, the proposed methodologies work for KL divergence,
squared Hellinger distance, and in general α-divergences only, but cannot be extended to
the general f-divergences in a straightforward way.

Figure 14. Raw empirical TVD estimator.
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6.2. Uniqueness of α-Divergences

We provide a more detailed explanation as to why the α-divergences are the unique
family of f-divergences that can be estimated using our type of estimator based on wait-
ing time random variable transformations. Take the vectorial case for example, where
we construct kNN empirical density estimates for the probability densities p̂k, q̂k; for an
estimator that is based on these estimates to work for an f-divergence, we would require
the f-divergence to be computable through an affinity term as an integration of the form∫

x f ( p(x)
q(x) )p(x)dx or

∫
x f ( p(x)

q(x) )q(x)dx up to some constant terms, and we require that the
affinity generating functions f satisfy a functional form that can be separated as either
f (ab) = g(a) + h(b) or f (ab) = g(a)h(b) for some functions g and h. This restriction is
made because, as we have seen for KL or α-divergence estimators, we rely on the indepen-
dence property of the waiting time random variables, hence we can separate the empirical
sums into three terms which converge separately and show the estimator to converge
asymptotically up to additive or multiplicative bias constants. Let us examine these two
types of restrictions on f.

For f to satisfy f (xy) = g(x) + h(y), ∀x, y > 0, we can see that f is equivalent to g and
h in the sense that they differ by a constant. Differentiating the previous equation with
respect to x and setting x = 1 we would get:

f ′(y) =
c
y

,

where c = g′(1) is a constant. The unique family of solutions to this condition is f (x) = c log x
up to some additive constants. This obviously corresponds to KL divergence and reverse KL
divergence when integrated against P and Q, respectively.

For the other case where f (xy) = g(x)h(y), ∀x, y > 0, let us consider differentiating
both sides with respect to x; this gives:

f ′(xy) = g′(x)
h(y)

y
.

Taking log on both sides and let l = log f ′, m = log g′:

l(xy) = m(x) + log
h(y)

y
.

Now take the derivative with respect to x again and set x = 1, we get:

l′(y) =
c
y

,

where c = m′(1) is a constant. The unique family of solutions satisfying the last condition is
l(y) = c log y + C and hence f (y) = ayb is a general solution up to some additive constant.
Without loss of generality, we can see that this corresponds uniquely to the affinity term of
interest of the family of alpha divergences where f (y) = yα, ∀α ∈ (0, 1), and up to some
constant terms.

Since KL and reverse KL divergence are limits of the α-divergences at two endpoints,
we can conclude that the unique family of f-divergences that can be estimated based on the
proposed estimators using waiting time random variables are the α-divergences. There is
an interesting connection, pointed out by Amari [14], that states that α-divergence is the
unique intersection between f-divergences and decomposable Bregman divergences on the
space on positive measures. Notice that if restricted to the space of probability measures
then the intersection reduces to only the KL divergences. Although the result does not
directly connect to the uniqueness of α-divergences being estimable through our proposed
methodologies, the proof technique that justifies the functional forms of the α-divergence
being the unique f-divergence that allows a decomposition into the Bregman divergence
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dual functions up to some nonlinear coordinate transformation is very similar to what we
carried out above and reaches the same conclusion—that the function f must take on a
power function form that corresponds to an α-divergence and at the limit of α becomes
logarithm functions that correspond to KL and reverse KL divergences.

7. Applications

The proposed estimator finds interesting applications in statistical estimation theory,
clustering algorithms, visualization/embedding algorithms, and possibly online learning
algorithms. We next describe a few such examples.

7.1. Bounding the Neyman–Pearson Region by Hellinger Affinity

We show that the Neyman–Pearson region contains one convex region determined
by the Hellinger affinity, which is contained in another. These inclusion relations gener-
alize the classical inequalities between total variation and Hellinger distance. Deploying
our estimator for Hellinger affinity ÂS(P, Q), we can approximately bound the Neyman–
Pearson region.

Our results (see Appendix A for more details) show that, with two distributions p, q,
and with s, t > 0 (which can be chosen so that s + t = 2 in standard case), the Neyman–
Pearson region for type I (α(E)) and type II (β(E)) errors satisfies the following relation
with the total variation distance for optimal choice of event E?:

sα(E?) + tβ(E?) =
t + s

2
− 1

2

∫
|sp− tq|dµ,

and can hence be bounded by the following inequalities where ρ(p, q) is the Hellinger affinity:

s + t
2
−
√
(

s + t
2

)2 − stρ(p, q)2 ≤ sα(E?) + tβ(E?) ≤
√

stρ(p, q).

Hence, by substituting our symmetric estimator for the Hellinger affinity term
ÂS(p, q) ≈ ρ(p, q), we can approximately bound the Neyman–Pearson region given
two samples from distributions p and q,

s + t
2
−
√
(

s + t
2

)2 − stÂS(p, q)2 / sα(E?) + tβ(E?) /
√

stÂS(p, q).

If we are dealing with multivariate distributions, then the appropriate multivariate
Hellinger affinity estimator from Section 4.3 can be used to approximately bound the
Neyman–Pearson region. As a remark, we observe that there is no provable general
relationship between Kullback–Leibler divergence or the rest of the α-divergences (besides
Hellinger distance) with the Neyman–Pearson regions.

7.2. Estimating Eigenvalues of the Matrix Pencil for Inference in the Family of Concentric Gaussians

Consider two multivariate distributions from the concentric Gaussian family
P = N(0, C2

1), Q = N(0, C2
2), where C2

1 , C2
2 ∈ Rd×d. It can be shown that any meaningful sta-

tistical inference function on the two covariance matrices should satisfy φ(C2
1 , C2

2) = φ(I, Λ),
where Λ is the diagonal matrix with diagonal entries λ1, . . . , λd being the eigenvalues of
the matrix C−1

1 C2
2(C

−1
1 )∗; see Appendix C for more details.

Since Λ is diagonal and I is simply the identity matrix, we can write
φ(C2

1 , C2
2) = h(λ1, . . . , λd). Hence, any inference we can make on the two concentric

Gaussians will depend only on sufficient statistics, which are the eigenvalues λ1, . . . , λd. In
the case of Hellinger affinity (and in general affinities for α-divergences), we can write it as
φ(C2

1 , C2
2) = h(1, λ1)× . . .× h(1, λd), where h(1, λi), ∀i = 1, . . . , d is the affinity calculated

based on two univariate Gaussian distributions N(0, 1) and N(0, λi). For example, we have
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analytic formulas for the affinity term of the α-divergence family between such univariate
Gaussian distributions:

hα(1, λ) =

√
λα

αλ + (1− α)
.

Then, we have, for the d-dimensional multivariate concentric Gaussians,

Aα(P||Q) = φα(C2
1 , C2

2) =

√√√√ (∏d
i=1 λi)α

∏d
i=1(αλi + 1− α)

.

Now, given d distinct values of α1, . . . , αd, the affinity values Aα1(P||Q), . . . , Aαd(P||Q)
can be used to determine the eigenvalues λ1, . . . , λd. Since our proposed estimator for
vectorial α-affinities Âα

k (P||Q) converges up to a multiplicative constant, we can use the
estimated values for α-affinities corresponding to d different values of α = α1, . . . , αd to
estimate the eigenvalues λ1, . . . , λd by solving a system of d equations. The estimated
values λ̂1, . . . , λ̂d can be then used for any inference problems on these two probability
distributions and they are sufficient for inference. This significantly reduces the noise in
estimating the entire covariance matrices C2

1 , C2
2 when the data come from high dimensions

where we could have an over-parametrization problem.

7.3. Stock Clustering and Visualization

We next describe a simple application to stock segmentation in a portfolio allocation
setting. Consider N stocks with T historic dates. Let {ri,t}i∈[N],t∈[T] denote the returns
of each stock on each date. Let {Ri}i∈[N] denote the random variable standing for the
returns of each stock, which is composed of data {ri,t}t∈[T . To cluster this universe of
stocks into K distinct groups, we can first use the Hellinger distance estimator ĤS(Ri, Rj)
for a pair of stocks ∀i 6= j ∈ [N]. Since the estimator is symmetric, we would arrive at a
symmetric distance matrix denoted by DH . It is also possible to combine the Hellinger
distance with a correlation distance metric through some transformations. After obtaining
the distance matrix (or an affinity matrix by subtracting it from 1), we can deploy any
desired clustering algorithm on it. The result would be K clusters of stocks that are grouped
by similarity in the chosen distance sense. We can also add another step, which is to repair
the distance matrix before clustering. There is the possibility that the distance matrix
estimated using the proposed estimator does not exactly correspond to a metric, which
means some groups of stocks may violate the triangle law in a metric. We can apply a
simple sparse metric repair algorithm, see, for example, [15]. The resulting clustering can
be helpful for portfolio allocation strategies since we can build sub-strategies inside each
cluster and merge them together.

Another example using the same distance matrix constructed from sample data is in
visualization algorithms such as FATE [16], which allow for the input of a precomputed
distance/affinity matrix specifying the dataset. The visualization algorithm uses the input
distance to compute embeddings in lower dimensions that preserve the local/global
structures of the dataset and can be useful in many subsequent applications. Here, our
estimator can also serve to compute the input distance matrix on sample data from N
entities using the Hellinger distance or α-divergences as the distance metric. This could
also be used in conjunction with a metric repair algorithm to adjust for the biases and errors
in empirical estimators.

7.4. Other Applications

Lastly, we suspect that the proposed estimator can find interesting applications in
UCB-type algorithms in multi-armed bandit frameworks, where the estimated pairwise
Hellinger distances/α-divergences for sample distributions from different arms can be
used to eliminate arms that fall outside of the confidence region balls around the top arms
historically. We leave these open problems as future works.
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8. Conclusions

We have proposed an estimator for the Hellinger affinity, and hence the squared
Hellinger distance, between samples from two distributions based solely on the empirical
CDF without the need to estimate the densities themselves. We have proven its almost-sure
convergence to the true squared Hellinger distance and have constructed a symmetric
version of this estimator. We showed the convergence behavior using several experiments
where we observed that the symmetric estimator constructed from averaging the two
one-sided estimators for the squared Hellinger distance turned out to be a favorable choice
due to accuracy in general and smaller variances. We then extended the estimator to a
family of α-divergences, where similar properties hold up to small modifications. For each
choice of α, we also showed how to construct a symmetric version of the estimator. We
also extended respective estimators to work with multivariate data in higher dimensions
using k-nearest-neighbor-based estimators. Numerical examples are given to show the
convergence of our proposed estimators. We conclude that the α-divergence family is the
unique f-divergences that can be estimated consistently using the proposed methodologies.
Our proposed estimators can be applied to approximately bounding the Neyman–Pearson
region of a statistical test, among many other applications.
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Appendix A. Shannon Entropy Estimator for 1D and Vectorial Data

Another simple extension of the methodologies in this work provides us with a
convergent estimator for the Shannon entropy defined as:

H(P) = −
∫

x
p(x) log p(x)dx

Here given 1D data samples {xi}n
i=1 from distribution P, we propose the following

estimator:

Ĥ(P) = − 1
n

n

∑
i=1

log δPc(xi)

where δPc(xi) are as defined in Section 4.1. It can be shown that:

Ĥ(P) = − 1
n

n

∑
i=1

log p(xi) +
1
n

n

∑
i=1

log
∆P(xi)

∆Pc(xi)
=

1
n

n

∑
i=1

log n∆P(xi)−
1
n

n

∑
i=1

log p(xi)

This suggests that Ĥ(P) → C + H(P) where C =
∫ ∞

0 log ze−zdz ≈ −0.5772 is the Euler-
Mascheroni constant. Hence we conclude that Ĥ(P) + 0.5772 converges almost surely to
H(P), the true Shannon entropy of P.

Similarly, for vectorial data in d-dimensions, we define the estimator based on the
k-nearest neighbor for a fixed k:

Ĥk(P) = − 1
n

n

∑
i=1

log p̂k(xi)

where p̂k(xi) is as defined in Section 4.3. By a similar argument, we show that:

Ĥk(P) = − 1
n

n

∑
i=1

log p(xi)+
1
n

n

∑
i=1

log
p(xi)

p̂k(xi)
→ H(P)+

1
(k− 1)!

∫ ∞

0
zk−1 log ze−zdz− log k
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Since the integral
∫ ∞

0 zk−1 log ze−zdz evaluates to ∑k−1
j=1

1
j + C, we conclude that Ĥk(P) +

log k−∑k−1
j=1

1
j + 0.5772 converges almost surely to H(P).

On a related note, a class of estimators of the Rényi and Tsallis entropies for mul-
tidimensional densities has been studied in [17], which is also based on computing the
k-nearest neighbor distances from empirical samples.

Appendix B. Hellinger Affinity and Neyman–Pearson Region

Following [18], we define the squared Hellinger distance and Hellinger affinity as:

H2(p, q) =
1
2

∫
|√p−√q|2dµ = 1− ρ(p, q)

Then the Type I and Type II errors for any event E used as a test for distribution by q, are
given by

α(E) =
∫

E
pdµ

β(E) = 1−
∫

E
qdµ

and we have the inequality for any non-negative s, t:

sα(E) + tβ(E) ≥ t + s
2
− 1

2

∫
|sp− tq|dµ

This is because sα(E) + tβ(E) = t −
∫

E(tq − sp)dµ ≥ t −
∫

E |sp − tq|dµ, and
sα(E) + tβ(E) = s −

∫
Ec(sp − tq)dµ ≥ s −

∫
Ec |sp − tq|dµ, where Ec is the complement

of event E. Combining these results gives the aforementioned inequality, which can be
seen as a generalization of the classic case when s = t = 1, see Chapter 13 of [18]. For an
optimal E?(s, t), an event for which this holds with equality (for example when E?(s, t) is
the support of sp− tq < 0), we have:

sα(E?(s, t)) + tβ(E?(s, t)) =
t + s

2
− 1

2

∫
|sp− tq|dµ

and (α(E?(s, t)), β(E?(s, t))) is the point on the Neyman–Pearson boundary with support-
ing line sα(E) + tβ(E) ≥ sα(E?(s, t)) + tβ(E?(s, t)). Since the Neyman–Pearson region is
convex, the family of f-divergences 1

2

∫
|sp− tq|dµ, where say s + t = 2, obtains a complete

description of the Neyman–Pearson region.
Additionally, we can relate the Neyman–Pearson region to the Hellinger distance by

using the Hellinger affinity. It is convenient to compute

1
2

∫
|√sp +

√
tq|2dµ =

s + t
2

+
√

stρ(p, q)

1
2

∫
|√sp−

√
tq|2dµ =

s + t
2
−
√

stρ(p, q)

where the first term is from the conservation of probability. Then we use this to simplify
the chain of inequalities:

1
2

∫
|√sp−

√
tq|2dµ ≤ 1

2

∫
|√sp−

√
tq|(√sp +

√
tq)dµ =

1
2

∫
|sp− tq|dµ

and
1
2

∫
|sp− tq|dµ =

1
2

∫
|√sp−

√
tq|(√sp +

√
tq)dµ

≤ (
1
2

∫
|√sp−

√
tq|2dµ)

1
2 (

1
2

∫
(
√

sp +
√

tq)2dµ)
1
2
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=

√
(

s + t
2

)2 − stρ(p, q)2

(where we used the Cauchy-Schwarz inequality) to the chain of inequalities:

s + t
2
−
√

stρ(p, q) ≤ 1
2

∫
|sp− tq|dµ ≤

√
(

s + t
2

)2 − stρ(p, q)2

We obtain then for the Neyman–Pearson boundary the upper and lower bounds in terms
of the Hellinger affinity:

s + t
2
−
√
(

s + t
2

)2 − stρ(p, q)2 ≤ sα(E?) + tβ(E?) ≤
√

stρ(p, q)

This bound has the gigantic advantage of also bounding the Neyman–Pearson region for
joint distributions, such as the result of i.i.d. samples. There is no general relationship
between Kullback–Leibler divergence and Neyman–Pearson regions since, say, for the
Bernoulli family we can have a sequence of pairs {pk, qk} such that H2(pk, qk) → 0 but
DKL(pk||qk) + DKL(qk||pk)→ ∞.

Appendix C. Sufficient Information Eigenvalues for Inference between
Concentric Gaussians

Let P = N(0, C2
1), Q = N(0, C2

2). For any meaningful statistical inference function on
P, Q we require

φ(C2
1 , C2

2) = φ(XC2
1 X∗, XC2

2 X∗)

where X is a coordinate transformation. Writing the QR decomposition for X = QR and let
R be chosen so that RC2

1 R∗ = I (where Q is unitary), which is equivalent to the Cholesky
factorization C−2

1 = R∗R. Define C1 = R−1 then we have

φ(C2
1 , C2

2) = φ(I, Q(C−1
1 C2

2(C
−1
1 )∗)Q∗)

We choose Q so that it is the eigenvectors of the Hermitian matrix C−1
1 C2

2(C
−1
1 )∗. So

we have the diagonal matrix Λ = Q(C−1
1 C2

2(C
−1
1 )∗)Q∗ where the diagonal elements are

eigenvalues of C−1
1 C2

2(C
−1
1 )∗. Then we obtain,

φ(C2
1 , C2

2) = φ(I, Λ)
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