Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = Neurogenin 3

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 6944 KiB  
Article
Sex-Dependent Variations in Hypothalamic Fatty Acid Profile and Neuropeptides in Offspring Exposed to Maternal Obesity and High-Fat Diet
by Mayara da Nóbrega Baqueiro, Laís Angélica de Paula Simino, João Paulo Costa, Carolina Panzarin, Andressa Reginato, Marcio Alberto Torsoni, Letícia Ignácio-Souza, Marciane Milanski, Michael G. Ross, Kelly Pereira Coca, Mina Desai and Adriana Souza Torsoni
Nutrients 2024, 16(3), 340; https://doi.org/10.3390/nu16030340 - 24 Jan 2024
Cited by 1 | Viewed by 2987
Abstract
Maternal obesity and/or high-fat diet (HF) consumption can disrupt appetite regulation in their offspring, contributing to transgenerational obesity and metabolic diseases. As fatty acids (FAs) play a role in appetite regulation, we investigated the maternal and fetal levels of FAs as potential contributors [...] Read more.
Maternal obesity and/or high-fat diet (HF) consumption can disrupt appetite regulation in their offspring, contributing to transgenerational obesity and metabolic diseases. As fatty acids (FAs) play a role in appetite regulation, we investigated the maternal and fetal levels of FAs as potential contributors to programmed hyperphagia observed in the offspring of obese dams. Female mice were fed either a control diet (CT) or HF prior to mating, and fetal and maternal blood and tissues were collected at 19 days of gestation. Elevated levels of linoleic acid were observed in the serum of HF dams as well as in the serum of their fetuses. An increased concentration of eicosadienoic acid was also detected in the hypothalamus of female HF-O fetuses. HF-O male fetuses showed increased hypothalamic neuropeptide Y (Npy) gene expression, while HF-O female fetuses showed decreased hypothalamic pro-opiomelanocortin (POMC) protein content. Both male and female fetuses exhibited reduced hypothalamic neurogenin 3 (NGN-3) gene expression. In vitro experiments confirmed that LA contributed to the decreased gene expression of Pomc and Ngn-3 in neuronal cells. During lactation, HF female offspring consumed more milk and had a higher body weight compared to CT. In summary, this study demonstrated that exposure to HF prior to and during gestation alters the FA composition in maternal serum and fetal serum and hypothalamus, particularly increasing n-6, which may play a role in the switch from POMC to NPY neurons, leading to increased weight gain in the offspring during lactation. Full article
Show Figures

Graphical abstract

21 pages, 3182 KiB  
Article
Fetal Programming of the Endocrine Pancreas: Impact of a Maternal Low-Protein Diet on Gene Expression in the Perinatal Rat Pancreas
by Louise Winkel, Morten Rasmussen, Louise Larsen, Louise T. Dalgaard and Jens H. Nielsen
Int. J. Mol. Sci. 2022, 23(19), 11057; https://doi.org/10.3390/ijms231911057 - 21 Sep 2022
Cited by 1 | Viewed by 3026
Abstract
In rats, the time of birth is characterized by a transient rise in beta cell replication, as well as beta cell neogenesis and the functional maturation of the endocrine pancreas. However, the knowledge of the gene expression during this period of beta cell [...] Read more.
In rats, the time of birth is characterized by a transient rise in beta cell replication, as well as beta cell neogenesis and the functional maturation of the endocrine pancreas. However, the knowledge of the gene expression during this period of beta cell expansion is incomplete. The aim was to characterize the perinatal rat pancreas transcriptome and to identify regulatory pathways differentially regulated at the whole organ level in the offspring of mothers fed a regular control diet (CO) and of mothers fed a low-protein diet (LP). We performed mRNA expression profiling via the microarray analysis of total rat pancreas samples at embryonic day (E) 20 and postnatal days (P) 0 and 2. In the CO group, pancreas metabolic pathways related to sterol and lipid metabolism were highly enriched, whereas the LP diet induced changes in transcripts involved in RNA transcription and gene regulation, as well as cell migration and apoptosis. Moreover, a number of individual transcripts were markedly upregulated at P0 in the CO pancreas: growth arrest specific 6 (Gas6), legumain (Lgmn), Ets variant gene 5 (Etv5), alpha-fetoprotein (Afp), dual-specificity phosphatase 6 (Dusp6), and angiopoietin-like 4 (Angptl4). The LP diet induced the downregulation of a large number of transcripts, including neurogenin 3 (Neurog3), Etv5, Gas6, Dusp6, signaling transducer and activator of transcription 3 (Stat3), growth hormone receptor (Ghr), prolactin receptor (Prlr), and Gas6 receptor (AXL receptor tyrosine kinase; Axl), whereas upregulated transcripts were related to inflammatory responses and cell motility. We identified differentially regulated genes and transcriptional networks in the perinatal pancreas. These data revealed marked adaptations of exocrine and endocrine in the pancreas to the low-protein diet, and the data can contribute to identifying novel regulators of beta cell mass expansion and functional maturation and may provide a valuable tool in the generation of fully functional beta cells from stem cells to be used in replacement therapy. Full article
Show Figures

Figure 1

13 pages, 2710 KiB  
Article
Low Molecular Weight Barley β-Glucan Affects Glucose and Lipid Metabolism by Prebiotic Effects
by Seiichiro Aoe, Kento Mio, Chiemi Yamanaka and Takao Kuge
Nutrients 2021, 13(1), 130; https://doi.org/10.3390/nu13010130 - 31 Dec 2020
Cited by 45 | Viewed by 5290
Abstract
We investigated the effect of low molecular weight barley β-glucan (LMW-BG) on cecal fermentation, glucose, and lipid metabolism through comparisons to high molecular weight β-glucan (HMW-BG). C57BL/6J male mice were fed a moderate-fat diet for 61 days. LMW-BG or HMW-BG was added to [...] Read more.
We investigated the effect of low molecular weight barley β-glucan (LMW-BG) on cecal fermentation, glucose, and lipid metabolism through comparisons to high molecular weight β-glucan (HMW-BG). C57BL/6J male mice were fed a moderate-fat diet for 61 days. LMW-BG or HMW-BG was added to the diet corresponding to 4% β-glucan. We measured the apparent absorption of fat, serum biomarkers, the expression levels of genes involved in glucose and lipid metabolism in the liver and ileum, and bacterial counts of the major microbiota groups using real time PCR. The concentration of short-chain fatty acids (SCFAs) in the cecum was analyzed by GC/MS. Significant reductions in serum leptin, total- and LDL-cholesterol concentrations, and mRNA expression levels of sterol regulatory element-binding protein-1c (SREBP-1c) were observed in both BG groups. HMW-BG specific effects were observed in inhibiting fat absorption and reducing abdominal deposit fat, whereas LMW-BG specific effects were observed in increasing bacterial counts of Bifidobacterium and Bacteroides and cecal total SCFAs, acetate, and propionate. mRNA expression of neurogenin 3 was increased in the LMW-BG group. We report that LMW-BG affects glucose and lipid metabolism via a prebiotic effect, whereas the high viscosity of HMW-BG in the digestive tract is responsible for its specific effects. Full article
(This article belongs to the Special Issue Beta-Glucan in Foods and Health Benefits)
Show Figures

Figure 1

18 pages, 4840 KiB  
Article
Pterocarpan-Enriched Soy Leaf Extract Ameliorates Insulin Sensitivity and Pancreatic β-Cell Proliferation in Type 2 Diabetic Mice
by Un-Hee Kim, Jeong-Hyun Yoon, Hua Li, Ji-Hyun Kang, Hyeon-Seon Ji, Ki Hun Park, Dong-Ha Shin, Ho-Yong Park and Tae-Sook Jeong
Molecules 2014, 19(11), 18493-18510; https://doi.org/10.3390/molecules191118493 - 13 Nov 2014
Cited by 31 | Viewed by 8303
Abstract
In Korea, soy (Glycine max (L.) Merr.) leaves are eaten as a seasonal vegetable or pickled in soy sauce. Ethyl acetate extracts of soy leaves (EASL) are enriched in pterocarpans and have potent α-glucosidase inhibitory activity. This study investigated the molecular mechanisms [...] Read more.
In Korea, soy (Glycine max (L.) Merr.) leaves are eaten as a seasonal vegetable or pickled in soy sauce. Ethyl acetate extracts of soy leaves (EASL) are enriched in pterocarpans and have potent α-glucosidase inhibitory activity. This study investigated the molecular mechanisms underlying the anti-diabetic effect of EASL in C57BL/6J mice with high-fat diet (HFD)-induced type 2 diabetes. Mice were randomly divided into normal diet (ND), HFD (60 kcal% fat diet), EASL (HFD with 0.56% (wt/wt) EASL), and Pinitol (HFD with 0.15% (wt/wt) pinitol) groups. Weight gain and abdominal fat accumulation were significantly suppressed by EASL. Levels of plasma glucose, HbA1c, and insulin in the EASL group were significantly lower than those of the HFD group, and the pancreatic islet of the EASL group had greater size than those of the HFD group. EASL group up-regulated neurogenin 3 (Ngn3), paired box 4 (Pax4), and v-maf musculoaponeurotic fibrosarcoma oncogene homolog A (MafA), which are markers of pancreatic cell development, as well as insulin receptor substrate 1 (IRS1), IRS2, and glucose transporter 4 (GLUT4), which are related to insulin sensitivity. Furthermore, EASL suppressed genes involved in hepatic gluconeogenesis and steatosis. These results suggest that EASL improves plasma glucose and insulin levels in mice with HDF-induced type 2 diabetes by regulating β-cell proliferation and insulin sensitivity. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Graphical abstract

20 pages, 3835 KiB  
Article
Mangiferin Facilitates Islet Regeneration and β-Cell Proliferation through Upregulation of Cell Cycle and β-Cell Regeneration Regulators
by Hai-Lian Wang, Chun-Yang Li, Bin Zhang, Yuan-De Liu, Bang-Min Lu, Zheng Shi, Na An, Liang-Kai Zhao, Jing-Jing Zhang, Jin-Ku Bao and Yi Wang
Int. J. Mol. Sci. 2014, 15(5), 9016-9035; https://doi.org/10.3390/ijms15059016 - 20 May 2014
Cited by 50 | Viewed by 8532
Abstract
Mangiferin, a xanthonoid found in plants including mangoes and iris unguicularis, was suggested in previous studies to have anti-hyperglycemic function, though the underlying mechanisms are largely unknown. This study was designed to determine the therapeutic effect of mangiferin by the regeneration of β-cells [...] Read more.
Mangiferin, a xanthonoid found in plants including mangoes and iris unguicularis, was suggested in previous studies to have anti-hyperglycemic function, though the underlying mechanisms are largely unknown. This study was designed to determine the therapeutic effect of mangiferin by the regeneration of β-cells in mice following 70% partial pancreatectomy (PPx), and to explore the mechanisms of mangiferin-induced β-cell proliferation. For this purpose, adult C57BL/6J mice after 7–14 days post-PPx, or a sham operation were subjected to mangiferin (30 and 90 mg/kg body weight) or control solvent injection. Mangiferin-treated mice exhibited an improved glycemia and glucose tolerance, increased serum insulin levels, enhanced β-cell hyperplasia, elevated β-cell proliferation and reduced β-cell apoptosis. Further dissection at the molecular level showed several key regulators of cell cycle, such as cyclin D1, D2 and cyclin-dependent kinase 4 (Cdk4) were significantly up-regulated in mangiferin-treated mice. In addition, critical genes related to β-cell regeneration, such as pancreatic and duodenal homeobox 1 (PDX-1), neurogenin 3 (Ngn3), glucose transporter 2 (GLUT-2), Forkhead box protein O1 (Foxo-1), and glucokinase (GCK), were found to be promoted by mangiferin at both the mRNA and protein expression level. Thus, mangiferin administration markedly facilitates β-cell proliferation and islet regeneration, likely by regulating essential genes in the cell cycle and the process of islet regeneration. These effects therefore suggest that mangiferin bears a therapeutic potential in preventing and/or treating the diabetes. Full article
(This article belongs to the Special Issue Nutritional Control of Metabolism)
Show Figures

14 pages, 3895 KiB  
Article
Notch Signaling Pathway Is Activated in Motoneurons of Spinal Muscular Atrophy
by Víctor Caraballo-Miralles, Andrea Cardona-Rossinyol, Ana Garcera, Laura Torres-Benito, Rosa M. Soler, Lucía Tabares, Jerònia Lladó and Gabriel Olmos
Int. J. Mol. Sci. 2013, 14(6), 11424-11437; https://doi.org/10.3390/ijms140611424 - 29 May 2013
Cited by 15 | Viewed by 9135
Abstract
Spinal muscular atrophy (SMA) is a neurodegenerative disease produced by low levels of Survival Motor Neuron (SMN) protein that affects alpha motoneurons in the spinal cord. Notch signaling is a cell-cell communication system well known as a master regulator of neural development, but [...] Read more.
Spinal muscular atrophy (SMA) is a neurodegenerative disease produced by low levels of Survival Motor Neuron (SMN) protein that affects alpha motoneurons in the spinal cord. Notch signaling is a cell-cell communication system well known as a master regulator of neural development, but also with important roles in the adult central nervous system. Aberrant Notch function is associated with several developmental neurological disorders; however, the potential implication of the Notch pathway in SMA pathogenesis has not been studied yet. We report here that SMN deficiency, induced in the astroglioma cell line U87MG after lentiviral transduction with a shSMN construct, was associated with an increase in the expression of the main components of Notch signaling pathway, namely its ligands, Jagged1 and Delta1, the Notch receptor and its active intracellular form (NICD). In the SMNΔ7 mouse model of SMA we also found increased astrocyte processes positive for Jagged1 and Delta1 in intimate contact with lumbar spinal cord motoneurons. In these motoneurons an increased Notch signaling was found, as denoted by increased NICD levels and reduced expression of the proneural gene neurogenin 3, whose transcription is negatively regulated by Notch. Together, these findings may be relevant to understand some pathologic attributes of SMA motoneurons. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Back to TopTop