Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = NbN/NbN-Ag film

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4720 KiB  
Article
Effect of the Crystal Structure on the Piezoelectricity of [001]-Textured (Na, K)(Nb, Sb)O3-SrZrO3-(Bi, Ag)ZrO3 Lead-Free Piezoelectric Thick Film
by Su-Hwan Go, Dae-Su Kim, Yeon-Gyeong Chae, Seok-June Chae, Eun-Ji Kim, Hyeon-Min Yu, Bum-Joo Kim, Seok-Jung Park, Joun-Ho Lee and Sahn Nahm
Actuators 2023, 12(2), 66; https://doi.org/10.3390/act12020066 - 3 Feb 2023
Cited by 12 | Viewed by 2276
Abstract
An amount of 3.0 mol% NaNbO3 seeds was used to align the grains of 0.96(Na0.5K0.5)(Nb0.93Sb0.07)O3-(0.04−x)SrZrO3-x(Bi0.5Ag0.5)ZrO3 [NKNS-(0.04−x)SZ-xBAZ] thick films (0.0 ≤ x ≤ 0.04) along the [...] Read more.
An amount of 3.0 mol% NaNbO3 seeds was used to align the grains of 0.96(Na0.5K0.5)(Nb0.93Sb0.07)O3-(0.04−x)SrZrO3-x(Bi0.5Ag0.5)ZrO3 [NKNS-(0.04−x)SZ-xBAZ] thick films (0.0 ≤ x ≤ 0.04) along the [001] direction. All the textured thick films had large Lotgering factors (>95%). The textured NKNS-0.02SZ-0.02BAZ thick film has a rhombohedral-orthorhombic-tetragonal (R-O-T) structure with a large proportion of the R-O structure (>80%) and nanodomains (0.7 nm in width and 6 nm in length). This thick film exhibited a large d33 value (760 ± 20 pC/N), kp value (0.58) and strain (0.16% at 4.0 kV/mm), with good temperature stability and fatigue properties. The high piezoelectricity of this thick film can be attributed to its high degree of texturing, optimized domain configuration, and the presence of nanodomains. The piezoelectric ceramic with a large d15/d33 value showed a large d33 value after [001] texturing because of the easy rotation of the spontaneous polarizations. Hence, the d15/d33 value can be used to select piezoelectric ceramics with large d33 values after [001] texturing. Full article
Show Figures

Figure 1

14 pages, 4538 KiB  
Article
Microstructure, Mechanical and Tribological Properties of Arc Ion Plating NbN-Based Nanocomposite Films
by Yingying Fu, Hongxuan Li, Jianmin Chen, Hongjian Guo and Xiang Wang
Nanomaterials 2022, 12(21), 3909; https://doi.org/10.3390/nano12213909 - 5 Nov 2022
Cited by 6 | Viewed by 2152
Abstract
NbN, NbN-Ag and NbN/NbN-Ag multilayer nanocomposite films were successfully deposited by an arc ion plating system (AIP), and their microstructures, mechanical and tribological properties were systematically investigated. The results show that all the films had a polycrystalline structure, and the Ag in the [...] Read more.
NbN, NbN-Ag and NbN/NbN-Ag multilayer nanocomposite films were successfully deposited by an arc ion plating system (AIP), and their microstructures, mechanical and tribological properties were systematically investigated. The results show that all the films had a polycrystalline structure, and the Ag in the Ag-doped films existed independently as a face-centered cubic phase. The content of Ag in NbN-Ag and NbN/NbN-Ag films was 20.11 and 9.07 at.%, respectively. NbN films fabricated by AIP technique had excellent mechanical properties, and their hardness and critical load were up to 44 GPa and 34.6 N, respectively. The introduction of Ag into NbN films obviously reduced the friction coefficient at room temperature, while the mechanical properties and wear resistance were degraded sharply in comparison with that of NbN films. However, the NbN/NbN-Ag films presented better hardness, H/E*, H3/E*2, adhesive strength and wear resistance than NbN-Ag films. Additionally, analysis of wear surfaces of the studied films and Al2O3 balls using 3D images, depth profiles, energy dispersive spectrometry (EDS) and Raman spectra indicated that the main wear mechanisms of NbN and NbN/NbN-Ag films were adhesive and oxidation wear with slight abrasive wear, while the severe abrasive and oxidation wear were the dominant wear mechanism for NbN-Ag films. Full article
Show Figures

Figure 1

17 pages, 3255 KiB  
Article
Thin Niobium and Niobium Nitride PVD Coatings on AISI 304 Stainless Steel as Bipolar Plates for PEMFCs
by Masoud Atapour, Vahid Rajaei, Stefano Trasatti, Maria Pia Casaletto and Gian Luca Chiarello
Coatings 2020, 10(9), 889; https://doi.org/10.3390/coatings10090889 - 17 Sep 2020
Cited by 39 | Viewed by 5875
Abstract
In this paper, Nb, NbN, and Nb/NbN thin films were successfully deposited on AISI 304 stainless steel (304 SS) as the bipolar plate (BPP) for proton-exchange membrane fuel cell (PEMFC) by employing a radio-frequency (RF) magnetron sputtering system. Corrosion assessments in simulated PEMFC [...] Read more.
In this paper, Nb, NbN, and Nb/NbN thin films were successfully deposited on AISI 304 stainless steel (304 SS) as the bipolar plate (BPP) for proton-exchange membrane fuel cell (PEMFC) by employing a radio-frequency (RF) magnetron sputtering system. Corrosion assessments in simulated PEMFC operating conditions (1 M H2SO4 + 2 mg/kg HF, 70 °C) revealed that the Nb and NbN coatings significantly improved the corrosion resistance of the 304 SS substrates. The Nb and NbN deposited samples at 350 °C exhibited superior corrosion resistance compared to those coated at 25 °C. Potentiostatic tests were also performed at the constant potentials of +0.644 and −0.056 V vs. Ag/AgCl to simulate the cathodic and anodic PEMFC conditions, respectively. The minimum current densities were recorded for the Nb coating in both anodic and cathodic conditions. Compared with the 304 SS substrate, all coatings showed lower interfacial contact resistance (ICR) and higher hydrophobicity. Among the tested coatings, the Nb coating exhibited the smallest ICR (9 mΩ·cm2 at 140 N/cm2). The results of this investigation revealed that the Nb and NbN coatings deposited by RF magnetron sputtering on 304 SS can be regarded as promising candidates for BPPs in PEMFCs. Full article
(This article belongs to the Special Issue Physical Vapor Deposition)
Show Figures

Figure 1

15 pages, 5395 KiB  
Article
Structural, Mechanical and Tribological Properties of NbCN-Ag Nanocomposite Films Deposited by Reactive Magnetron Sputtering
by Fanjing Wu, Lihua Yu, Hongbo Ju, Isaac Asempah and Junhua Xu
Coatings 2018, 8(2), 50; https://doi.org/10.3390/coatings8020050 - 29 Jan 2018
Cited by 26 | Viewed by 4892
Abstract
In this study, reactive magnetron sputtering was applied for preparing NbCN-Ag films with different Ag additions. Ag contents in the as-deposited NbCN-Ag films were achieved by adjusting Ag target power. The composition, microstructure, mechanical properties, and tribological properties were characterized using energy-dispersive X-ray [...] Read more.
In this study, reactive magnetron sputtering was applied for preparing NbCN-Ag films with different Ag additions. Ag contents in the as-deposited NbCN-Ag films were achieved by adjusting Ag target power. The composition, microstructure, mechanical properties, and tribological properties were characterized using energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), high resolution transmission electron microscopy (HRTEM), Raman spectrometry, nano-indentation, and high-temperature sliding wear tests. Results indicated that face-centered cubic (fcc) NbN, hexagonal close-packed (hcp) NbN and fcc Ag, amorphous C and amorphous CNx phase co-existed in the as-deposited NbCN-Ag films. After doping with 2.0 at.% Ag, the hardness and elastic modulus reached a maximum value of 33 GPa and 340 GPa, respectively. Tribological properties were enhanced by adding Ag in NbCN-Ag films at room temperature. When the test temperature rose from 300 to 500 °C, the addition of Ag was found beneficial for the friction properties, showing a lowest friction coefficient of ~0.35 for NbCN-12.9 at.% Ag films at 500 °C. This was mainly attributed to the existence of AgOx, NbOx, and AgNbOx lubrication phases that acted as solid lubricants to modify the wear mechanism. Full article
Show Figures

Figure 1

Back to TopTop