Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = Nb(Zn) doped ITO thin films

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 8070 KiB  
Article
Structure, Optical and Electrical Properties of Nb(Zn) Doped Sol–Gel ITO Films: Effect of Substrates and Dopants
by Mariuca Gartner, Anna Szekeres, Simeon Simeonov, Maria Covei, Mihai Anastasescu, Silviu Preda, Jose Maria Calderon-Moreno, Luminita Predoana, Hermine Stroescu, Daiana Mitrea and Madalina Nicolescu
Molecules 2024, 29(22), 5480; https://doi.org/10.3390/molecules29225480 - 20 Nov 2024
Viewed by 1064
Abstract
We present comparative studies of sol–gel ITO multilayered films undoped and doped with Nb or Zn (4 at.%). The films were obtained by successive depositions of five layers using the dip-coating sol–gel method on microscopic glass, SiO2/glass, and Si substrates. The [...] Read more.
We present comparative studies of sol–gel ITO multilayered films undoped and doped with Nb or Zn (4 at.%). The films were obtained by successive depositions of five layers using the dip-coating sol–gel method on microscopic glass, SiO2/glass, and Si substrates. The influence of the type of substrates and dopant atoms on the structure and optical properties of the sol–gel ITO thin films is examined and discussed in detail. XRD patterns of these layers showed a polycrystalline structure with an average crystallite size of <11 nm. Raman spectroscopy confirmed the chemical bonding of dopants with oxygen and showed the absence of crystallized Nb(Zn)-oxide particles, indicated by the XRD pattern. Spectroscopic Ellipsometry and AFM imaging revealed a clear dependence of the optical parameters and surface morphology of the ITO and ITO:Nb(Zn) thin films on the type of substrates and dopants. The analysis of the current-voltage and capacitance-voltage characteristics of the Al/ITO/Si structures revealed the presence of charge carrier traps in the ITO bulk and the ITO-Si interface. The densities of these traps are obtained and the character of the current transport mechanism is established. Full article
(This article belongs to the Special Issue Chemical Research on High-Performance Composites)
Show Figures

Figure 1

Back to TopTop