Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = NOx ramping

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 8057 KiB  
Article
Strategies for Coordinated Merging of Vehicles at Ramps in New Hybrid Traffic Environments
by Zhizhen Liu, Xinyue Liu, Qile Li, Zhaolei Zhang, Chao Gao and Feng Tang
Sustainability 2025, 17(10), 4522; https://doi.org/10.3390/su17104522 - 15 May 2025
Cited by 1 | Viewed by 542
Abstract
With the advancement of autonomous driving technology, transportation systems are inevitably confronted with mixed traffic flows consisting of connected and automated vehicles (CAVs) and human-driven vehicles (HDVs). Current research has predominantly focused on implementing homogeneous control strategies for ramp merging vehicles in such [...] Read more.
With the advancement of autonomous driving technology, transportation systems are inevitably confronted with mixed traffic flows consisting of connected and automated vehicles (CAVs) and human-driven vehicles (HDVs). Current research has predominantly focused on implementing homogeneous control strategies for ramp merging vehicles in such scenarios, which, however, may result in the oversight of specific requirements in fine-grained traffic scenarios. Therefore, a classified cooperative merging strategy is proposed to address the challenges of microscopic decision-making in hybrid traffic environments where HDVs and CAVs coexist. The optimal cooperating vehicle on the mainline is first selected for the target ramp vehicle based on the principle of minimizing time differences. Three merging strategies—joint coordinated control, partial cooperation, and speed limit optimization—are then established according to the pairing type between the cooperating and ramp vehicles. Optimal deceleration and lane-changing decisions are implemented using the average speed change rate within the control area to achieve cooperative merging. Validation via a SUMO-based simulation platform demonstrates that the proposed strategy reduces fuel consumption by 6.32%, NOx emissions by 9.42%, CO2 emissions by 9.37%, and total delay by 32.15% compared to uncontrolled merging. These results confirm the effectiveness of the proposed strategy in mitigating energy consumption, emissions, and vehicle delays. Full article
Show Figures

Figure 1

14 pages, 4494 KiB  
Article
Ecologically Oriented Freeway Control Methods Integrated Speed Limits and Ramp Toll Booths Layout
by Pengsen Yang, Minghui Ma and Chaoteng Wu
Sustainability 2024, 16(11), 4404; https://doi.org/10.3390/su16114404 - 23 May 2024
Cited by 2 | Viewed by 1093
Abstract
Traffic exhaust pollution, especially in congested areas of freeways, is one of the main causes of air pollution. With the increase in the number of vehicles, traffic and environmental issues have become more prominent. In addition, traffic congestion leads to frequent starting and [...] Read more.
Traffic exhaust pollution, especially in congested areas of freeways, is one of the main causes of air pollution. With the increase in the number of vehicles, traffic and environmental issues have become more prominent. In addition, traffic congestion leads to frequent starting and stopping of vehicles, further exacerbating environmental pollution. This article focuses on the problem of frequent starting and stopping of vehicles, using variable speed limit control to smooth traffic flow, reduce vehicle speed, and alleviate exhaust emissions caused by traffic congestion. At the same time, considering the traffic and environmental benefits of bottleneck areas on freeways, the VT-Micro model is used to calculate exhaust emissions, and a coordinated control method for the mainline and ramp of freeways is proposed. The simulation experiment results show that the total driving time of the mainline and ramp collaborative control method considering environmental benefits has been reduced by 24.69%, CO emissions have been reduced by 4.79%, HC emissions have been reduced by 7.65%, NOx emissions have been reduced by 2.48%, and fuel consumption has been reduced by 4.98%. Full article
(This article belongs to the Section Sustainable Transportation)
Show Figures

Figure 1

18 pages, 2705 KiB  
Article
Influence of Varying Compression Ratio of a Compression Ignition Engine Fueled with B20 Blends of Sea Mango Biodiesel
by R Rohith Renish, Amala Justus Selvam, Robert Čep and Muniyandy Elangovan
Processes 2022, 10(7), 1423; https://doi.org/10.3390/pr10071423 - 21 Jul 2022
Cited by 7 | Viewed by 3198
Abstract
The ever-worsening environmental situation brought on by the huge use of fossil fuels has ramped up biodiesel production. Several studies have shown that a 20% biodiesel-diesel blend (B20) could be the best for utility in a compression ignition (CI) engine. The present study [...] Read more.
The ever-worsening environmental situation brought on by the huge use of fossil fuels has ramped up biodiesel production. Several studies have shown that a 20% biodiesel-diesel blend (B20) could be the best for utility in a compression ignition (CI) engine. The present study focuses on the characteristics of a variable compression ratio (VCR) engine running with a B20 blend of sea mango biodiesel at compression ratios of 16:1, 17:1 and 18:1. VCR is a technology which permits the engine to modify its compression ratio to improve the fuel economy under varying loads. The experimental results reveal an improvement of 5.27% and 6.25% in the BTE as well as SFC with B20 mix, respectively, at compression ratio (CR) 18:1 against diesel at standard CR, which is 17:1. At CR 18:1, the CO, HC and smoke emissions of B20 fuel at full load were 26.78%, 37.76% and 23.44%, correspondingly lower than those of diesel at standard CR. However, the blend was found to have higher NOx emissions at all the CRs. The least NOx emissions of the blend were noted to be at CR 16:1, although it was 0.77% higher than diesel at standard CR. The combustion characteristics also improved at higher CRs. The findings of this study indicate that the B20 blend of sea mango biodiesel could be utilized at CR 18:1 to replace diesel without any engine modifications. Full article
Show Figures

Figure 1

14 pages, 22804 KiB  
Article
Emissions Merit Function for Evaluating Multifunctional Catalyst Beds
by Todd J. Toops and Pranaw Kunal
Catalysts 2022, 12(4), 419; https://doi.org/10.3390/catal12040419 - 8 Apr 2022
Viewed by 2109
Abstract
With emission control regulations getting stricter, multi-functional catalyst systems are increasingly important for low-temperature operation. We investigate a wide range of multi-component catalyst systems, as physical mixtures and in multi-bed configurations, while varying the ratios of hydrocarbon traps (HCT), passive NOx adsorbers (PNAs), [...] Read more.
With emission control regulations getting stricter, multi-functional catalyst systems are increasingly important for low-temperature operation. We investigate a wide range of multi-component catalyst systems, as physical mixtures and in multi-bed configurations, while varying the ratios of hydrocarbon traps (HCT), passive NOx adsorbers (PNAs), and diesel oxidation catalysts (DOC). Using industrially guided protocols, we measured the ability of these complex catalyst systems to reduce emissions during a 40 °C/min temperature ramp to simulate cold-start conditions. Using a temperature boundary condition of 250 °C, the average conversion was calculated for each regulated pollutant: CO, NOx, and total hydrocarbons (THC). An emissions merit function was developed to evaluate the effectiveness of each system relative to the relevant emission standards and expected engine exhaust concentrations. This merit function identified that a 1:1:4 ratio of PNA:HCT:DOC was the most effective emissions reduction configuration and had similar reactivity as a physical mixture or as a PNA→HCT→DOC multi-bed reactor. Full article
(This article belongs to the Special Issue Zeolite Catalysts for Energy and Environment)
Show Figures

Graphical abstract

18 pages, 5381 KiB  
Article
Effective Accentuation of Voltage-Gated Sodium Current Caused by Apocynin (4′-Hydroxy-3′-methoxyacetophenone), a Known NADPH-Oxidase Inhibitor
by Tzu-Hsien Chuang, Hsin-Yen Cho and Sheng-Nan Wu
Biomedicines 2021, 9(9), 1146; https://doi.org/10.3390/biomedicines9091146 - 3 Sep 2021
Cited by 11 | Viewed by 2597
Abstract
Apocynin (aPO, 4′-Hydroxy-3′-methoxyacetophenone) is a cell-permeable, anti-inflammatory phenolic compound that acts as an inhibitor of NADPH-dependent oxidase (NOX). However, the mechanisms through which aPO can interact directly with plasmalemmal ionic channels to perturb the amplitude or gating of ionic currents in [...] Read more.
Apocynin (aPO, 4′-Hydroxy-3′-methoxyacetophenone) is a cell-permeable, anti-inflammatory phenolic compound that acts as an inhibitor of NADPH-dependent oxidase (NOX). However, the mechanisms through which aPO can interact directly with plasmalemmal ionic channels to perturb the amplitude or gating of ionic currents in excitable cells remain incompletely understood. Herein, we aimed to investigate any modifications of aPO on ionic currents in pituitary GH3 cells or murine HL-1 cardiomyocytes. In whole-cell current recordings, GH3-cell exposure to aPO effectively stimulated the peak and late components of voltage-gated Na+ current (INa) with different potencies. The EC50 value of aPO required for its differential increase in peak or late INa in GH3 cells was estimated to be 13.2 or 2.8 μM, respectively, whereas the KD value required for its retardation in the slow component of current inactivation was 3.4 μM. The current–voltage relation of INa was shifted slightly to more negative potential during cell exposure to aPO (10 μM); however, the steady-state inactivation curve of the current was shifted in a rightward direction in its presence. Recovery of peak INa inactivation was increased in the presence of 10 μM aPO. In continued presence of aPO, further application of rufinamide or ranolazine attenuated aPO-stimulated INa. In methylglyoxal- or superoxide dismutase-treated cells, the stimulatory effect of aPO on peak INa remained effective. By using upright isosceles-triangular ramp pulse of varying duration, the amplitude of persistent INa measured at low or high threshold was enhanced by the aPO presence, along with increased hysteretic strength appearing at low or high threshold. The addition of aPO (10 μM) mildly inhibited the amplitude of erg-mediated K+ current. Likewise, in HL-1 murine cardiomyocytes, the aPO presence increased the peak amplitude of INa as well as decreased the inactivation or deactivation rate of the current, and further addition of ranolazine or esaxerenone attenuated aPO-accentuated INa. Altogether, this study provides a distinctive yet unidentified finding that, despite its effectiveness in suppressing NOX activity, aPO may directly and concertedly perturb the amplitude, gating and voltage-dependent hysteresis of INa in electrically excitable cells. The interaction of aPO with ionic currents may, at least in part, contribute to the underlying mechanisms through which it affects neuroendocrine, endocrine or cardiac function. Full article
(This article belongs to the Special Issue Recent Advances in the Discovery of Novel Drugs on Natural Molecules)
Show Figures

Figure 1

25 pages, 10248 KiB  
Article
Model-Based Control of Torque and Nitrogen Oxide Emissions in a Euro VI 3.0 L Diesel Engine through Rapid Prototyping
by Stefano d’Ambrosio, Roberto Finesso, Gilles Hardy, Andrea Manelli, Alessandro Mancarella, Omar Marello and Antonio Mittica
Energies 2021, 14(4), 1107; https://doi.org/10.3390/en14041107 - 19 Feb 2021
Cited by 9 | Viewed by 2463
Abstract
In the present paper, a model-based controller of engine torque and engine-out Nitrogen oxide (NOx) emissions, which was previously developed and tested by means of offline simulations, has been validated on a FPT F1C 3.0 L diesel engine by means of rapid prototyping. [...] Read more.
In the present paper, a model-based controller of engine torque and engine-out Nitrogen oxide (NOx) emissions, which was previously developed and tested by means of offline simulations, has been validated on a FPT F1C 3.0 L diesel engine by means of rapid prototyping. With reference to the previous version, a new NOx model has been implemented to improve robustness in terms of NOx prediction. The experimental tests have confirmed the basic functionality of the controller in transient conditions, over different load ramps at fixed engine speeds, over which the average RMSE (Root Mean Square Error) values for the control of NOx emissions were of the order of 55–90 ppm, while the average RMSE values for the control of brake mean effective pressure (BMEP) were of the order of 0.25–0.39 bar. However, the test results also highlighted the need for further improvements, especially concerning the effect of the engine thermal state on the NOx emissions in transient operation. Moreover, several aspects, such as the check of the computational time, the impact of the controller on other pollutant emissions, or on the long-term engine operations, will have to be evaluated in future studies in view of the controller implementation on the engine control unit. Full article
Show Figures

Figure 1

19 pages, 2619 KiB  
Article
Emissions Effects of Energy Storage for Frequency Regulation: Comparing Battery and Flywheel Storage to Natural Gas
by Eric Pareis and Eric Hittinger
Energies 2021, 14(3), 549; https://doi.org/10.3390/en14030549 - 21 Jan 2021
Cited by 3 | Viewed by 3092
Abstract
With an increase in renewable energy generation in the United States, there is a growing need for more frequency regulation to ensure the stability of the electric grid. Fast ramping natural gas plants are often used for frequency regulation, but this creates emissions [...] Read more.
With an increase in renewable energy generation in the United States, there is a growing need for more frequency regulation to ensure the stability of the electric grid. Fast ramping natural gas plants are often used for frequency regulation, but this creates emissions associated with the burning of fossil fuels. Energy storage systems (ESSs), such as batteries and flywheels, provide an alternative frequency regulation service. However, the efficiency losses of charging and discharging a storage system cause additional electrical generation requirements and associated emissions. There is not a good understanding of these indirect emissions from charging and discharging ESSs in the literature, with most sources stating that ESSs for frequency regulation have lower emissions, without quantification of these emissions. We created a model to estimate three types of emissions (CO2, NOX, and SO2) from ESSs providing frequency regulation, and compare them to emissions from a natural gas plant providing the same service. When the natural gas plant is credited for the generated electricity, storage systems have 33% to 68% lower CO2 emissions than the gas turbine, depending on the US eGRID subregion, but higher NOX and SO2 emissions. However, different plausible assumptions about the framing of the analysis can make ESSs a worse choice so the true difference depends on the nature of the substitution between storage and natural gas generation. Full article
(This article belongs to the Special Issue Power System Dynamics and Renewable Energy Integration)
Show Figures

Figure 1

26 pages, 7688 KiB  
Article
An Integrated Variable Speed Limit and ALINEA Ramp Metering Model in the Presence of High Bus Volume
by Nima Dadashzadeh and Murat Ergun
Sustainability 2019, 11(22), 6326; https://doi.org/10.3390/su11226326 - 11 Nov 2019
Cited by 10 | Viewed by 4973
Abstract
Under many circumstances, when providing full bus priority methods, urban transport officials have to operate buses in mixed traffic based on their road network limitations. In the case of Istanbul’s Metrobus lane, for instance, when the route comes to the pre-designed Bosphorus Bridge, [...] Read more.
Under many circumstances, when providing full bus priority methods, urban transport officials have to operate buses in mixed traffic based on their road network limitations. In the case of Istanbul’s Metrobus lane, for instance, when the route comes to the pre-designed Bosphorus Bridge, it has no choice but to merge with highway mixed traffic until it gets to the other side. Much has been written on the relative success of implementing Ramp Metering (RM), for example ALINEA (‘Asservissement line´ aire d’entre´ e autoroutie’) and Variable Speed Limits (VSL), two of the most widely-used “merging congestion” management strategies, in both a separate and combined manner. However, there has been no detailed study regarding the combination of these systems in the face of high bus volume. This being the case, the ultimate goal of this study is to bridge this gap by developing and proposing a combination of VSL and RM strategies in the presence of high bus volume (VSL+ALINEA/B). The proposed model has been coded using microscopic simulation software—VISSIM—and its vehicle actuated programming (VAP) feature; referred to as VisVAP. For current traffic conditions, the proposed model is able to improve total travel time by 9.0%, lower the number of average delays of mixed traffic and buses by 29.1% and 81.5% respectively, increase average speed by 12.7%, boost bottleneck throughout by 2.8%, and lower fuel consumption, Carbon Monoxide (CO), Nitrogen Oxides (NOx), and Volatile Organic Compounds (VOC) emissions by 17.3% compared to the existing “VSL+ALINEA” model. The results of the scenario analysis confirmed that the proposed model is not only able to decrease delay times on the Metrobus system but is also able to improve the adverse effects of high bus volume when subject to adjacent mixed traffic flow along highway sections. Full article
(This article belongs to the Special Issue Sustainable and Intelligent Transportation Systems)
Show Figures

Figure 1

17 pages, 3673 KiB  
Article
Intermedin in Paraventricular Nucleus Attenuates Ang II-Induced Sympathoexcitation through the Inhibition of NADPH Oxidase-Dependent ROS Generation in Obese Rats with Hypertension
by Ying Kang, Lei Ding, Hangbing Dai, Fangzheng Wang, Hong Zhou, Qing Gao, Xiaoqing Xiong, Feng Zhang, Tianrun Song, Yan Yuan, Guoqing Zhu and Yebo Zhou
Int. J. Mol. Sci. 2019, 20(17), 4217; https://doi.org/10.3390/ijms20174217 - 28 Aug 2019
Cited by 29 | Viewed by 4027
Abstract
Increased reactive oxygen species (ROS) induced by angiotensin II (Ang II) in the paraventricular nucleus (PVN) play a critical role in sympathetic overdrive in hypertension (OH). Intermedin (IMD), a bioactive peptide, has extensive clinically prospects in preventing and treating cardiovascular diseases. The study [...] Read more.
Increased reactive oxygen species (ROS) induced by angiotensin II (Ang II) in the paraventricular nucleus (PVN) play a critical role in sympathetic overdrive in hypertension (OH). Intermedin (IMD), a bioactive peptide, has extensive clinically prospects in preventing and treating cardiovascular diseases. The study was designed to test the hypothesis that IMD in the PVN can inhibit the generation of ROS caused by Ang II for attenuating sympathetic nerve activity (SNA) and blood pressure (BP) in rats with obesity-related hypertension (OH). Male Sprague-Dawley rats (160–180 g) were used to induce OH by feeding of a high-fat diet (42% kcal as fat) for 12 weeks. The dynamic changes of sympathetic outflow were evaluated as the alterations of renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) responses to certain chemicals. The results showed that the protein expressions of Ang II type 1 receptor (AT1R), calcitonin receptor-like receptor (CRLR) and receptor activity-modifying protein 2 (RAMP2) and RAMP3 were markedly increased, but IMD was much lower in OH rats when compared to control rats. IMD itself microinjection into PVN not only lowered SNA, NADPH oxidase activity and ROS level, but also decreased Ang II-caused sympathetic overdrive, and increased NADPH oxidase activity, ROS levels and mitogen-activated protein kinase/extracellular signal regulated kinase (MAPK/ERK) activation in OH rats. However, those effects were mostly blocked by the adrenomedullin (AM) receptor antagonist AM22-52 pretreatment. The enhancement of SNA caused by Ang II can be significantly attenuated by the pretreatment of AT1R antagonist lorsatan, superoxide scavenger Tempol and NADPH oxidase inhibitor apocynin (Apo) in OH rats. ERK activation inhibitor U0126 in the PVN reversed Ang II-induced enhancement of SNA, and Apo and IMD pretreatment in the PVN decreased Ang II-induced ERK activation. Chronic IMD administration in the PVN resulted in significant reductions in basal SNA and BP in OH rats. Moreover, IMD lowered NADPH oxidase activity and ROS level in the PVN; reduced the protein expressions of AT1R and NADPH oxidase subunits NOX2 and NOX4, and ERK activation in the PVN; and decreased Ang II levels-inducing sympathetic overactivation. These results indicated that IMD via AM receptors in the PVN attenuates SNA and hypertension, and decreases Ang II-induced enhancement of SNA through the inhibition of NADPH oxidase activity and ERK activation. Full article
(This article belongs to the Special Issue Modulation of Oxidative Stress: Molecular and Pharmacological Aspects)
Show Figures

Graphical abstract

32 pages, 7186 KiB  
Article
Real-Time Simulation of Torque and Nitrogen Oxide Emissions in an 11.0 L Heavy-Duty Diesel Engine for Model-Based Combustion Control
by Roberto Finesso, Gilles Hardy, Alessandro Mancarella, Omar Marello, Antonio Mittica and Ezio Spessa
Energies 2019, 12(3), 460; https://doi.org/10.3390/en12030460 - 31 Jan 2019
Cited by 27 | Viewed by 4239
Abstract
A real-time combustion model was assessed and applied to simulate BMEP (Brake Mean Effective Pressure) and NOx (Nitrogen Oxide) emissions in an 11.0 L FPT Cursor 11 diesel engine for heavy-duty applications. The activity was carried out in the frame of the [...] Read more.
A real-time combustion model was assessed and applied to simulate BMEP (Brake Mean Effective Pressure) and NOx (Nitrogen Oxide) emissions in an 11.0 L FPT Cursor 11 diesel engine for heavy-duty applications. The activity was carried out in the frame of the IMPERIUM H2020 EU Project. The developed model was used as a starting base to derive a model-based combustion controller, which is able to control indicated mean effective pressure and NOx emissions by acting on the injected fuel quantity and main injection timing. The combustion model was tested and assessed at steady-state conditions and in transient operation over several load ramps. The average root mean square error of the model is of the order of 110 ppm for the NOx simulation and of 0.3 bar for the BMEP simulation Moreover, a statistical robustness analysis was performed on the basis of the expected input parameter deviations, and a calibration sensitivity analysis was carried out, which showed that the accuracy is almost unaffected when reducing the calibration dataset by about 80%. The model was also tested on a rapid prototyping device and it was verified that it features real-time capability, since the computational time is of the order of 300–400 µs. Finally, the basic functionality of the model-based combustion controller was tested offline at steady-state conditions. Full article
(This article belongs to the Special Issue Internal Combustion Engines 2018)
Show Figures

Figure 1

13 pages, 3550 KiB  
Article
Chronic Insulin Infusion Down-Regulates Circulating and Urinary Nitric Oxide (NO) Levels Despite Molecular Changes in the Kidney Predicting Greater Endothelial NO Synthase Activity in Mice
by Maurice B. Fluitt, Sophia Rizvi, Lijun Li, Ashley Alunan, Hwal Lee, Swasti Tiwari and Carolyn M. Ecelbarger
Int. J. Mol. Sci. 2018, 19(10), 2880; https://doi.org/10.3390/ijms19102880 - 22 Sep 2018
Cited by 9 | Viewed by 4218
Abstract
Insulin therapy is often needed to overcome insulin receptor resistance in type 2 diabetes; however, the impact of providing additional insulin to already hyperinsulinemic subjects is not clear. We infused male TALLYHO/Jng (TH) mice (insulin resistant) with insulin (50 U/kg·bw/d) or vehicle (control) [...] Read more.
Insulin therapy is often needed to overcome insulin receptor resistance in type 2 diabetes; however, the impact of providing additional insulin to already hyperinsulinemic subjects is not clear. We infused male TALLYHO/Jng (TH) mice (insulin resistant) with insulin (50 U/kg·bw/d) or vehicle (control) by osmotic minipump for 14 days. One group of insulin-infused mice was switched to 4% NaCl diet (high-sodium diet, HSD) in the second week. Blood chemistry revealed a significantly higher anion gap and blood sodium concentrations with insulin infusion, i.e., relative metabolic acidosis. Systolic BP and heart rate were slightly (~5 mm Hg) higher in insulin-infused versus control mice. HSD resulted in a modest and transient rise in mean arterial blood pressure (BP), relative to control or insulin-infused, normal-NaCl-fed mice. In kidney, insulin infusion: (1) increased total and phosphorylated (serine-1177) endothelial nitric oxide synthase (eNOS) band densities; (2) reduced band density of the uncoupled form of eNOS; and (3) increased renal homogenate nitric oxide synthase (NOS) activity. Despite this, plasma and urine levels of nitrates plus nitrites (NOx) fell with insulin infusion, by day 14 (40–50%) suggesting worsening of resistance. Overall, insulin infusion ramps up the cellular means in kidney to increase vasodilatory and natriuretic NO, but in the long term may be associated with worsening of insulin receptor resistance. Full article
(This article belongs to the Special Issue Insulin and Insulin Receptor in Diseases)
Show Figures

Figure 1

Back to TopTop