Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = NDN-based VANETs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
38 pages, 7363 KiB  
Article
CMAF: Context and Mobility-Aware Forwarding Model for V-NDN
by Elídio Tomás da Silva, Joaquim Macedo and António Costa
Electronics 2024, 13(12), 2394; https://doi.org/10.3390/electronics13122394 - 19 Jun 2024
Cited by 1 | Viewed by 1372
Abstract
Content dissemination in Vehicular Ad hoc Networks (VANET) is a challenging topic due to the high mobility of nodes, resulting in the difficulty of keeping routing tables updated. State-of-the-art proposals overcome this problem by avoiding the management of routing tables but resort to [...] Read more.
Content dissemination in Vehicular Ad hoc Networks (VANET) is a challenging topic due to the high mobility of nodes, resulting in the difficulty of keeping routing tables updated. State-of-the-art proposals overcome this problem by avoiding the management of routing tables but resort to the so-called table of neighbors (NT) from which a next-hop is selected. However, NTs also require updating. For this purpose, some solutions resort to broadcasting beacons. We propose a Context- and Mobility-Aware Forwarding (CMAF) strategy that resorts to a Short-Term Mobility Prediction—STMP—algorithm, for keeping the NT updated. CMAF is based in Named Data Networking (NDN) and works in two modes, Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I). V2V CMAF leverages the overheard packets to extract mobility information used to manage NT and feed the STMP algorithm. V2I CMAF also uses a controlled and less frequent beaconing, initially from the Road-Side Units (RSUs), for a further refinement of the predictions from STMP. Results from extensive simulations show that CMAF presents superior performance when compared to the state of the art. In both modes, V2V and V2I (with one beacon broadcast every 10 s) present 5–10% higher Interest Satisfaction Ratio (ISR) than those of CCLF for the same overhead, at a cost of 1 s of increased Interest Satisfaction Delay (ISD). Moreover, the number of retransmissions of CMAF is also comparatively low for relatively the same number of hops. Compared to VNDN and Multicast, CMAF presents fewer retransmissions and 10% to 45% higher ISR with an increased overhead of about 20%. Full article
Show Figures

Figure 1

19 pages, 12688 KiB  
Article
A Machine Learning-Based Interest Flooding Attack Detection System in Vehicular Named Data Networking
by Arif Hussain Magsi, Syed Agha Hassnain Mohsan, Ghulam Muhammad and Suhni Abbasi
Electronics 2023, 12(18), 3870; https://doi.org/10.3390/electronics12183870 - 13 Sep 2023
Cited by 12 | Viewed by 2452
Abstract
A vehicular ad hoc network (VANET) has significantly improved transportation efficiency with efficient traffic management, driving safety, and delivering emergency messages. However, existing IP-based VANETs encounter numerous challenges, like security, mobility, caching, and routing. To cope with these limitations, named data networking (NDN) [...] Read more.
A vehicular ad hoc network (VANET) has significantly improved transportation efficiency with efficient traffic management, driving safety, and delivering emergency messages. However, existing IP-based VANETs encounter numerous challenges, like security, mobility, caching, and routing. To cope with these limitations, named data networking (NDN) has gained significant attention as an alternative solution to TCP/IP in VANET. NDN offers promising features, like intermittent connectivity support, named-based routing, and in-network content caching. Nevertheless, NDN in VANET is vulnerable to a variety of attacks. On top of attacks, an interest flooding attack (IFA) is one of the most critical attacks. The IFA targets intermediate nodes with a storm of unsatisfying interest requests and saturates network resources such as the Pending Interest Table (PIT). Unlike traditional rule-based statistical approaches, this study detects and prevents attacker vehicles by exploiting a machine learning (ML) binary classification system at roadside units (RSUs). In this connection, we employed and compared the accuracy of five (5) ML classifiers: logistic regression (LR), decision tree (DT), K-nearest neighbor (KNN), random forest (RF), and Gaussian naïve Bayes (GNB) on a publicly available dataset implemented on the ndnSIM simulator. The experimental results demonstrate that the RF classifier achieved the highest accuracy (94%) in detecting IFA vehicles. On the other hand, we evaluated an attack prevention system on Python that enables intermediate vehicles to accept or reject interest requests based on the legitimacy of vehicles. Thus, our proposed IFA detection technique contributes to detecting and preventing attacker vehicles from compromising the network resources. Full article
(This article belongs to the Special Issue Recent Advances in Intelligent Vehicular Networks and Communications)
Show Figures

Figure 1

18 pages, 3054 KiB  
Article
A Content Poisoning Attack Detection and Prevention System in Vehicular Named Data Networking
by Arif Hussain Magsi, Leanna Vidya Yovita, Ali Ghulam, Ghulam Muhammad and Zulfiqar Ali
Sustainability 2023, 15(14), 10931; https://doi.org/10.3390/su151410931 - 12 Jul 2023
Cited by 16 | Viewed by 2095
Abstract
Named data networking (NDN) is gaining momentum in vehicular ad hoc networks (VANETs) thanks to its robust network architecture. However, vehicular NDN (VNDN) faces numerous challenges, including security, privacy, routing, and caching. Specifically, the attackers can jeopardize vehicles’ cache memory with a Content [...] Read more.
Named data networking (NDN) is gaining momentum in vehicular ad hoc networks (VANETs) thanks to its robust network architecture. However, vehicular NDN (VNDN) faces numerous challenges, including security, privacy, routing, and caching. Specifically, the attackers can jeopardize vehicles’ cache memory with a Content Poisoning Attack (CPA). The CPA is the most difficult to identify because the attacker disseminates malicious content with a valid name. In addition, NDN employs request–response-based content dissemination, which is inefficient in supporting push-based content forwarding in VANET. Meanwhile, VNDN lacks a secure reputation management system. To this end, our contribution is three-fold. We initially propose a threshold-based content caching mechanism for CPA detection and prevention. This mechanism allows or rejects host vehicles to serve content based on their reputation. Secondly, we incorporate a blockchain system that ensures the privacy of every vehicle at roadside units (RSUs). Finally, we extend the scope of NDN from pull-based content retrieval to push-based content dissemination. The experimental evaluation results reveal that our proposed CPA detection mechanism achieves a 100% accuracy in identifying and preventing attackers. The attacker vehicles achieved a 0% cache hit ratio in our proposed mechanism. On the other hand, our blockchain results identified tempered blocks with 100% accuracy and prevented them from storing in the blockchain network. Thus, our proposed solution can identify and prevent CPA with 100% accuracy and effectively filters out tempered blocks. Our proposed research contribution enables the vehicles to store and serve trusted content in VNDN. Full article
(This article belongs to the Special Issue Evolving Applications for Smart Vehicles)
Show Figures

Figure 1

21 pages, 1127 KiB  
Article
Context-Aware Pending Interest Table Management Scheme for NDN-Based VANETs
by Waseeq Ul Islam Zafar, Muhammad Atif Ur Rehman, Farhana Jabeen, Sanaa Ghouzali, Zobia Rehman and Wadood Abdul
Sensors 2022, 22(11), 4189; https://doi.org/10.3390/s22114189 - 31 May 2022
Cited by 7 | Viewed by 2399
Abstract
In terms of delivery effectiveness, Vehicular Adhoc NETworks (VANETs) applications have multiple, possibly conflicting, and disparate needs (e.g., latency, reliability, and delivery priorities). Named Data Networking (NDN) has attracted the attention of the research community for effective content retrieval and dissemination in mobile [...] Read more.
In terms of delivery effectiveness, Vehicular Adhoc NETworks (VANETs) applications have multiple, possibly conflicting, and disparate needs (e.g., latency, reliability, and delivery priorities). Named Data Networking (NDN) has attracted the attention of the research community for effective content retrieval and dissemination in mobile environments such as VANETs. A vehicle in a VANET application is heavily reliant on information about the content, network, and application, which can be obtained from a variety of sources. The information gathered can be used as context to make better decisions. While it is difficult to obtain the necessary context information at the IP network layer, the emergence of NDN is changing the tide. The Pending Information Table (PIT) is an important player in NDN data retrieval. PIT size is the bottleneck due to the limited opportunities provided by current memory technologies. PIT overflow results in service disruptions as new Interest messages cannot be added to PIT. Adaptive, context-aware PIT entry management solutions must be introduced to NDN-based VANETs for effective content dissemination. In this context, our main contribution is a decentralised, context-aware PIT entry management (CPITEM) protocol. The simulation results show that the proposed CPITEM protocol achieves lower Interest Satisfaction Delay and effective PIT utilization based on context when compared to existing PIT entry replacement protocols. Full article
(This article belongs to the Topic Intelligent Transportation Systems)
Show Figures

Figure 1

29 pages, 5106 KiB  
Article
Context-Aware Naming and Forwarding in NDN-Based VANETs
by Waseeq Ul Islam Zafar, Muhammad Atif Ur Rehman, Farhana Jabeen, Byung-Seo Kim and Zobia Rehman
Sensors 2021, 21(14), 4629; https://doi.org/10.3390/s21144629 - 6 Jul 2021
Cited by 16 | Viewed by 3601
Abstract
Vehicular ad-hoc network (VANET) is a technology that allows ubiquitous mobility to mobile users. Inter-vehicle communication is an integral component of intelligent transportation systems that enables a wide variety of applications where vehicles interact and cooperate with each other, from safety applications to [...] Read more.
Vehicular ad-hoc network (VANET) is a technology that allows ubiquitous mobility to mobile users. Inter-vehicle communication is an integral component of intelligent transportation systems that enables a wide variety of applications where vehicles interact and cooperate with each other, from safety applications to non-safety applications. VANETs applications have different needs (e.g., latency, reliability, delivery priorities, etc.) in terms of delivery effectiveness. In the last decade, named data networking (NDN) gained the attention of the research community for effective content retrieval and dissemination in mobile environments such as VANETs. In NDN, the content’s name has a vital role in storing and retrieving the content effectively and efficiently. In NDN-based VANETs, adaptive content dissemination solutions must be introduced that can make decisions related to forwarding, cache management, etc., based on context information represented by a content name. In this context, our main contributions are two-fold: (i) we present the hierarchical context-aware content-naming (CACN) scheme for NDN-based VANETs that enables naming the safety and non-safety applications, and (ii) we present a decentralized context-aware notification (DCN) protocol that broadcasts event notification information for awareness within the application-based geographical area. Simulation results show that the proposed DCN protocol succeeds in achieving reduced transmissions, bandwidth, and energy compared to existing critical contents dissemination protocols. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

20 pages, 2839 KiB  
Article
Evaluation of Push and Pull Communication Models on a VANET with Virtual Traffic Lights
by Oscar Gama, Alexandre Santos, Antonio Costa, Maria João Nicolau, Bruno Dias, Joaquim Macedo, Bruno Ribeiro, Fabio Goncalves and Joao Simoes
Information 2020, 11(11), 510; https://doi.org/10.3390/info11110510 - 30 Oct 2020
Cited by 10 | Viewed by 3958
Abstract
It is expected in a near future that safety applications based on vehicle-to-everything communications will be a common reality in the traffic roads. This technology will contribute to improve the safety of vulnerable road users, for example, with the use of virtual traffic [...] Read more.
It is expected in a near future that safety applications based on vehicle-to-everything communications will be a common reality in the traffic roads. This technology will contribute to improve the safety of vulnerable road users, for example, with the use of virtual traffic light systems (VTLS) in the intersections. This work implements and evaluates a VTLS conceived to help the pedestrians pass safely the intersections without real traffic lights. The simulated VTLS scenario used two distinct communication paradigms—the pull and push communication models. The pull model was implemented in named data networking (NDN), because NDN uses natively a pull-based communication model, where consumers send requests to pull the contents from the provider. A distinct approach is followed by the push-based model, where consumers subscribe previously the information, and then the producers distribute the available information to those consumers. Comparing the performance of the push and pull models on a VANET with VTLS, it is observed that the push mode presents lower packet loss and generates fewer packets, and consequently occupies less bandwidth, than the pull mode. In fact, for the considered metrics, the VTLS implemented with the pull mode presents no advantage when compared with the push mode. Full article
(This article belongs to the Special Issue Vehicle-To-Everything (V2X) Communication)
Show Figures

Figure 1

15 pages, 1881 KiB  
Article
Smart Traffic Lights over Vehicular Named Data Networking
by Majed Al-qutwani and Xingwei Wang
Information 2019, 10(3), 83; https://doi.org/10.3390/info10030083 - 26 Feb 2019
Cited by 21 | Viewed by 7729
Abstract
The existing traffic light system fails to deal with the increase in vehicular traffic requirements due to fixed time programming. Traffic flow suffers from vehicle delay and congestion. A new networking technology called vehicular ad hoc networking (VANET) offers a novel solution for [...] Read more.
The existing traffic light system fails to deal with the increase in vehicular traffic requirements due to fixed time programming. Traffic flow suffers from vehicle delay and congestion. A new networking technology called vehicular ad hoc networking (VANET) offers a novel solution for vehicular traffic management. Nowadays, vehicles communicate with each other (V2V), infrastructure (V2I), or roadside units (V2R) using IP-based networks. Nevertheless, IP-based networks demonstrate low performance with moving nodes as they depend on communication with static nodes. Currently, the research community is studying a new networking architecture based on content name called named data networking (NDN) to implement it in VANET. NDN is suitable for VANET as it sends/receives information based on content name, not content address. In this paper, we present one of VANET’s network applications over NDN, a smart traffic light system. Our system solves the traffic congestion issue as well as reducing the waiting time of vehicles in road intersections. This system replaces the current conventional system with virtual traffic lights (VTLs). Instead of installing traffic lights at every intersection, we utilize a road side unit (RSU) to act as the intersection controller. Instead of a light signal, the RSU collects the orders of vehicles that have arrived or will arrive at the intersection. After processing the orders according to the priority policy, the RSU sends an instant message for every vehicle to pass the intersection or wait for a while. The proposed system mimics a human policeman intersection controlling. This approach is suitable for autonomous vehicles as they only receive signals from the RSU instead of processing many images. We provide a map of future work directions for enhancing this solution to take into account pedestrian and parking issues. Full article
(This article belongs to the Special Issue Vehicular Networks and Applications)
Show Figures

Figure 1

Back to TopTop