Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = NACA airfoil fins

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 6060 KiB  
Article
Investigation of Asymmetric Flow of a Slender Body with Low-Aspect Ratio Fins Having Large Deflection Angles
by Yonghong Li, Lin Zhang, Chuan Gao, Jilong Zhu and Bin Dong
Aerospace 2024, 11(10), 835; https://doi.org/10.3390/aerospace11100835 - 10 Oct 2024
Cited by 4 | Viewed by 1092
Abstract
To understand the asymmetric flow of a slender body with low-aspect ratio fins, a wind tunnel experiment was carried out, and the asymmetric flow was observed when the pair of fins had a symmetric deflection angle of 30° at a small angle of [...] Read more.
To understand the asymmetric flow of a slender body with low-aspect ratio fins, a wind tunnel experiment was carried out, and the asymmetric flow was observed when the pair of fins had a symmetric deflection angle of 30° at a small angle of attack and zero sideslip angle at transonic speeds. The unsteady characteristics of flow around the moving fins, especially for the evolution of the asymmetric flow, was carefully numerically investigated via the RANS method. To verify the numerical method, the experimental steady wind tunnel data of the NACA 0012 airfoil with sinusoidal pitching motion were adopted. A hysteresis loop exists as a function of the deflection angle during the upstroke and downstroke motions. The side force is periodic due to the asymmetric flow peaks at the downstroke and their peak value appeared at around δz = 25°, which was independent of the deflection frequency. As the deflection frequency increased, the asymmetric flow formed at a higher deflection angle during the upstroke motion, but decayed at a lower deflection angle during the downstroke motion, resulting in a more significant unsteady hysteresis effect. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

17 pages, 7825 KiB  
Article
Thermal-Hydraulic Characteristics of Carbon Dioxide in Printed Circuit Heat Exchangers with Staggered Airfoil Fins
by Kun Xi, Xiang Zhao, Zhihui Xie, Fankai Meng, Zhuoqun Lu and Xiangkun Ji
Processes 2023, 11(8), 2244; https://doi.org/10.3390/pr11082244 - 26 Jul 2023
Cited by 4 | Viewed by 1755
Abstract
Airfoil fin printed circuit heat exchangers (PCHEs) have broad application prospects in the naval, aerospace, electric power, and petrochemical industries. The channel structure is a critical factor affecting their thermal-hydraulic characteristics. In this study, a novel PCHE channel structure with staggered NACA 0025 [...] Read more.
Airfoil fin printed circuit heat exchangers (PCHEs) have broad application prospects in the naval, aerospace, electric power, and petrochemical industries. The channel structure is a critical factor affecting their thermal-hydraulic characteristics. In this study, a novel PCHE channel structure with staggered NACA 0025 airfoil-shaped fins was proposed; accordingly, the thermal-hydraulic characteristics of the novel channel structure using carbon dioxide as the working fluid at different fin heights under different operating conditions (trans-, near-, and far-critical) were investigated. The results indicated that the thermal-hydraulic performance of the PCHE under the trans-critical operating condition was better than that under the near-critical and far-critical operating conditions. Compared with conventional airfoil fin channels, the novel airfoil fin channel attained comparable comprehensive performance while reducing the fin volume by 50%, thus achieving a more lightweight PCHE design. The comprehensive performance of the PCHE was the poorest when the fin height was slightly below the channel height, which should be avoided during the design of airfoil fin PCHEs. The results provide theoretical support for the design and optimization of airfoil fin PCHEs. Full article
(This article belongs to the Special Issue Advances in Process Optimization and Control)
Show Figures

Graphical abstract

15 pages, 5078 KiB  
Article
Parametric Study on Thermo-Hydraulic Performance of NACA Airfoil Fin PCHEs Channels
by Wei Wang, Liang Ding, Fangming Han, Yong Shuai, Bingxi Li and Bengt Sunden
Energies 2022, 15(14), 5095; https://doi.org/10.3390/en15145095 - 12 Jul 2022
Cited by 12 | Viewed by 2689
Abstract
In this work, a discontinuous airfoil fin printed circuit heat exchanger (PCHE) was used as a recuperator in a micro gas turbine system. The effects of the airfoil fin geometry parameters (arc height, maximum arc height position, and airfoil thickness) and the airfoil [...] Read more.
In this work, a discontinuous airfoil fin printed circuit heat exchanger (PCHE) was used as a recuperator in a micro gas turbine system. The effects of the airfoil fin geometry parameters (arc height, maximum arc height position, and airfoil thickness) and the airfoil fin arrangements (horizontal and vertical spacings) on the PCHE channel’s thermo-hydraulic performance were extensively examined by a numerical parametric study. The flow features, local heat transfer coefficient, and wall shear stress were examined in detail to obtain an enhanced heat transfer mechanism for a better PCHE design. The results show that the heat transfer and flow resistance were mainly increased at the airfoil leading edge owing to a flow jet, whereas the airfoil trailing edge had little effect on the thermo-hydraulic performance. The airfoil thickness was the most significant while the arc height and the vertical spacing were moderately significant to the performance. Moreover, only the airfoil thickness had a significant effect on the PCHE compactness. Based on a comprehensive investigation, two solutions NACA-6230 and -3220 were selected owing to their better thermal performance and smaller pressure drop, respectively, with horizontal spacings of 2 mm and vertical spacings of 2 or 3 mm. Full article
(This article belongs to the Special Issue Advanced Propulsion System and Thermal Management Technology)
Show Figures

Figure 1

Back to TopTop