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Abstract: In this work, a discontinuous airfoil fin printed circuit heat exchanger (PCHE) was used as a
recuperator in a micro gas turbine system. The effects of the airfoil fin geometry parameters (arc height,
maximum arc height position, and airfoil thickness) and the airfoil fin arrangements (horizontal and
vertical spacings) on the PCHE channel’s thermo-hydraulic performance were extensively examined
by a numerical parametric study. The flow features, local heat transfer coefficient, and wall shear
stress were examined in detail to obtain an enhanced heat transfer mechanism for a better PCHE
design. The results show that the heat transfer and flow resistance were mainly increased at the
airfoil leading edge owing to a flow jet, whereas the airfoil trailing edge had little effect on the
thermo-hydraulic performance. The airfoil thickness was the most significant while the arc height
and the vertical spacing were moderately significant to the performance. Moreover, only the airfoil
thickness had a significant effect on the PCHE compactness. Based on a comprehensive investigation,
two solutions NACA-6230 and -3220 were selected owing to their better thermal performance and
smaller pressure drop, respectively, with horizontal spacings of 2 mm and vertical spacings of 2 or
3 mm.

Keywords: printed circuit heat exchanger; NACA airfoil fins; micro gas turbine recuperator; thermo-
hydraulic; parametric study

1. Introduction

A printed circuit heat exchanger (PCHE) as a new type of heat exchanger is widely used
in high-pressure and high-temperature applications [1]. It possesses a high heat exchange
area density (2500 m2/m3), high compactness, and a large heat transfer coefficient [2], due
to the millimeter-level micro channels. Compared to some special finned surfaces [3,4] and
metal foam heat exchangers [5], the unique diffusion welding technology of PCHE can
improve its reliability. Because of the above advantages, PCHEs are commonly used in fuel
gas supply systems, LNG regasification, and cryogenic applications, supercritical carbon
dioxide (sCO2) systems, and liquefied hydrogen and hydrogen refueling stations.

Apart from the above benefits of PCHE, a key problem of flow resistance needs to be
solved when it is used in thermal power cycles. Numerous extensive studies have been
conducted on this problem. Four types of PCHE channels have been the most studied [2,6],
which are shown in Figure 1. Among these, the straight [7,8] and zigzag [9,10] fins are
continuous fin types, whereas the S-type [11] and airfoil fins [12] are discontinuous fin types.
Tsuzuki et al. [11] first found that an S-type fin channel has one-fifth the pressure drop of
a zigzag channel at an equal heat transfer performance. Kim et al. [12] first designed an
airfoil fin PCHE channel using the NACA-0020 model. The simulation results showed that
the heat transfer coefficients of the airfoil fin and zigzag channels were similar; however,
the pressure drop of the airfoil fin channel was reduced to one-twentieth of that of the
zigzag channel.
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Because airfoil fin channels have demonstrated the best thermo-hydraulic perfor-
mances, many studies have been conducted on airfoil fin PCHE applications in various
fields. An experimental study of airfoil fin (NACA-0025) PCHE in a concentrating solar
power system was performed by Wang et al. [13], with molten salt as a working fluid. The
experimental data presented that the heat transfer performance of the airfoil fin PCHE was
superior to the traditional PCHEs with straight and zigzag fins. Chen et al. [14] compared
a NACA-00XX airfoil fin PCHE with a conventional zigzag PCHE used in the supercritical
carbon dioxide Brayton cycle. The numerical results also presented that the pressure drop
of the airfoil fin PCHE was remarkably reduced, and it maintained excellent heat transfer
performance. The NACA-0010 airfoil fin PCHE demonstrated better comprehensive per-
formance than the other three PCHEs (0020, 0030, and 0040). Xu et al. [15] performed a
numerical study on four discontinuous fin configurations (rectangle, rounded rectangle,
ellipse, and airfoil fins) in parallel and staggered arrangements. The results showed that
the fin configurations had little effect on the overall thermo-hydraulic performances at low
mass flow rates, and the airfoil fin with the staggered arrangement was better than the
other types of fins. Chu et al. [16] studied three types of airfoil fin (NACA-8315, 8515, and
8715) PCHEs with consistent and reverse layouts used as condensers in the supercritical
CO2 Brayton power cycle. The results showed that the NACA-8515 airfoil fins with both
consistent and reverse layouts on average improved the heat transfer coefficient by 28%
and 11% with an increase of the pressure drop by 150% and 22%, respectively, compared
with the symmetrical airfoil fins (NACA-0015). Ma et al. [17] employed an airfoil fin PCHE
in a very high-temperature reactor and studied the effect of the fin-endwall fillet on the
thermo-hydraulic performance. They found that the fin-endwall fillet increased the heat
transfer and pressure drop with a longitudinal pitch of 1.63, whereas it had little effect
when the longitudinal pitch was above 1.88. Although the above studies have examined
airfoil fin PCHEs from different aspects, there is no report on the numerous parameters of
airfoil fins and their arrangements. In addition, the enhanced heat transfer mechanism of
airfoil fins needs to be clarified to guide PCHE design.

In this work, the discontinuous airfoil fin PCHE was employed as a micro gas turbine
recuperator in the extended-range electric vehicle system [18], which has high requirements
on heat transfer, pressure drop, and compactness, simultaneously. Therefore, the effects of
the airfoil fin parameters (arc height, maximum arc height position, and airfoil thickness)
and the airfoil fin arrangements (horizontal and vertical spacings) on the heat transfer and
pressure drop were extensively examined by a parametric study. The flow features, local
heat transfer coefficient, and wall shear stress were investigated to obtain an enhanced heat
transfer mechanism for a better PCHE design.
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2. Mathematical Approach
2.1. Physical Model and Boundary Conditions

In this work, the heat transfer and pressure drop of PCHE channels with different
NACA airfoil fins were investigated. The structures of the two types of channels are shown
in Figure 2. The examined geometrical parameters of the airfoil fin PCHE channels include
the horizontal spacing (Lh), vertical spacing (Lv), airfoil chord (Ll), arc height (hl), maximum
arc height position (ll), and airfoil thickness (tl), corresponding to the NACA airfoil rules.
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c3 5.969 929.5 0.005678 5.191 × 10−6 

Figure 2. Structure parameters of NACA airfoil fins and arrangements.

The computational domain and boundary conditions are shown in Figure 3. Specifi-
cally, the inlet is a velocity boundary with a fixed temperature (Tin = 630 K), the outlet is a
pressure boundary (Pout = 0.3 MPa), the left and right walls are periodic boundaries, and
the up, down, and airfoil walls are fixed temperature (Twall = 650 K) walls. The working
fluid (compressed air) was incompressible, and its thermo-properties only varied with
temperature, as can be seen from Table 1.
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Table 1. Thermo-physical properties of cold air (0.3 MPa, 600–720 K) [19].

Equation: f(T)=c1·T2+c2·T+c3

ρ (kg/m3) Cp (J/kg/K) λ (W/m/K) µ (kg/m/s)
c1 4.801 × 10−6 4.46 × 10−5 −1.432 × 10−8 −1.235 × 10−11

c2 −0.009275 0.1777 7.462 × 10−5 5.021 × 10−8

c3 5.969 929.5 0.005678 5.191 × 10−6

The structured grids were used for the airfoil fin channels’ computational domain.
The near wall grids were refined with y plus less than 1 [20], as shown in Figure 4. A
grid independence test was performed on the NACA-0320 airfoil fin channel, as shown in
Figure 5, and the total number of grids was chosen as 892,000.
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2.2. Governing Equations and Numerical Approach

In this study, the realizable k-ε model was employed [21,22]; the governing equations
are given below [23].

The continuity equation is
∂(ρui)

∂xi
= 0 (1)

The momentum equation is

∂

∂xj
(ρuiuj) = −

∂P
∂xi

+
∂

∂xj
[µ(

∂ui
∂xj

+
∂uj

∂xi
− 2

3
δij

∂uj

∂xj
)] +

∂

∂xj
(−ρu′iu

′
j) (2)

The energy equation is

∂

∂xi
[ui(ρE + P)] =

∂

∂xi
[(λ +

cPµt

Prt
)

∂T
∂xj

+ µui(
∂ui
∂xj

+
∂uj

∂xi
− 2

3
δij

∂uj

∂xj
)] (3)

where E is the total energy, E = CPT − P/ρ + u2/2, and λ is the thermal conductivity.
The k equation is

∂

∂xj
(ρkuj) =

∂

∂xj
[(µ +

µt

σk
)

∂k
∂xj

] + Gk − ρε (4)
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The ε equation is

∂

∂xj
(ρεuj) =

∂

∂xj
[(µ +

µt

σε
)

∂ε

∂xj
] + ρC1Sε − ρC2

ε2

k +
√

vε
(5)

where Gk represents the production of turbulent kinetic energy and is modeled as Gk = µtS2.
The µt represents the eddy viscosity and is modeled as µt = ρCµk2/ε [24].

In the above expressions, C1 = max
[
0.43, η

η+5

]
, S =

√
2SijSij, Sij = 1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
,

C2 = 1.9, σk = 1, and σε = 1.2 [25].
The semi-implicit method for the pressure-linked equations (SIMPLE) algorithm was

employed on the velocity and pressure equations, and a second-order upwind scheme was
employed on the energy and momentum equations. The scaled residuals for all solutions
must be less than 10−6 [26,27] to obtain convergence.

2.3. Data Reduction

The average convective heat transfer coefficient (h), average pressure drop (∆PL), and
total average heat flux (QA) were employed to assess the heat transfer, flow resistance, and
compactness of the PCHEs, respectively [28–30].

h =
q

Twall − 0.5(Tin + Tout)
(6)

∆PL = ∆P/L (7)

QA = Q/A (8)

where q is the average heat flux, L is the channel length, ∆P is the pressure drop between
the inlet and outlet, and A is the area of heat exchange.

2.4. Numerical Model Validation

An experimental work by Ishizuka et al. [31] was used to validate the numerical
model in this work. The experimental PCHE is a typically zigzag-type channel with the
following geometrical parameters: hot-side channel pitch pl = 9 mm, angle α = 115◦, and
radius r = 0.95 mm; cold-side channel pitch pl = 7.24 mm, angle α = 100◦, and radius
r = 0.9 mm. The fluids for the two sides were both supercritical CO2. The hot-side working
fluid is supercritical CO2; inlet temperature = 553.05 K, inlet pressure = 2.52 MPa, and
mass flow rate = 0.867 g/s. The cold-side working fluid is also supercritical CO2; inlet
temperature = 381.05 K, inlet pressure = 8.28 MPa, and mass flow rate = 0.9456 g/s. The
comparison of experimental data and the numerical results are shown in Table 2. The
maximum error for the cold side is less than ±5%, and the maximum error for the hot side
is less than ±1%, which meet the accuracy requirements.

Table 2. Numerical model validation using experimental data [31].

Experimental Numerical Error

Pressure drop of cold
side (Pa) 73,220 76,832.0 −3612 (−4.9%)

Pressure drop of hot
side (Pa) 24,180 24,381.6 −2016.6 (−0.83%)

Temperature difference of
cold side (K) 140.38 146.8 −6.42 (−4.6%)

Temperature difference of
hot side (K) 169.6 171.3 −1.7 (−1.0%)
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3. Results and Discussion
3.1. Effect of Arc Height (hl)

Four different arc heights (0330, 3330, 6330, and 9330) are compared in Figure 6. With
the increase in arc height, the airfoils present more asymmetry, and the convective heat
transfer coefficient (h), pressure drop per unit length (∆PL), and heat flux per unit area (QA)
increase but to different extents. The average h values for 3330, 6330, and 9330 are 2.3%,
6.4%, and 8% higher than that for 0330, respectively. In addition, the average ∆PL values
for 3330, 6330, and 9330 are 3.3%, 15.4%, and 27.7% higher than that for 0330, respectively.
The above trends suggest that the pressure drop increases rapidly with the increase in hl,
whereas the heat transfer performance increase is moderate. Moreover, the QA increases
slightly with increasing arc height (hl); this means that the hl is dis-significant to the PCHE
compactness design.
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The distributions of the velocity u, turbulent kinetic energy (TKE), local convective
heat transfer coefficient (hlocal), and wall shear stress (WSS) for NACA-0330 and 9330 are
shown in Figure 7. From Figure 7a, velocity u for NACA-0330 is accelerated significantly in
the main flow region, whereas for NACA-9330, this occurs near the airfoil surface, which is
more beneficial for heat transfer improvement. The TKE for NACA-0330 is remarkable at
the airfoil trailing edge, which indicates severe turbulent pulsations (see Figure 7b). The
TKE for NACA-9330 is inhibited by the vertical velocity component. Figure 7c shows that
the hlocal reaching the maximum at the airfoil leading edge is due to the jet flow heat transfer
being significant (than the convective heat transfer). The hlocal reach to the minimum at the
airfoil trailing edge is due to the secondary flow velocity being very low, causing a thick
boundary layer. Moreover, the hlocal for NACA-0330 in the main flow region and at the
airfoil trailing edge is higher than that for NACA-9330, whereas the hlocal for NACA-9330
in the near-wall region is significantly higher than that for NACA-0330. In Figure 7d, the
WSS reflects the flow resistance created by the airfoil fins. It can be seen that the WSS is
significant owing to the turbulent flow impingement on the airfoil leading edge, whereas it
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is minimum at the airfoil trailing edge owing to a secondary vortex generation. In addition,
the WSS for NACA-9330 is overall greater than that for NACA-0330, based on the more
drastic impact effect and the lower secondary flow generation of the former.
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uin = 18 m/s).

3.2. Effect of Maximum Arc Height Position (ll)

The maximum arc height position (ll) mainly affects the second half of the airfoil
structure, whereas it has a minor effect on the first half, as in the cases of NACA-6220, 6420,
6620, and 6820 shown in Figure 8. The average h, ∆PL, and QA values for the four kinds of
ll indicate that the ll is not significant to the three evaluation performances. Relatively, h
and ∆PL for ll < 5 (NACA-6220 and -6420) cause slightly greater effects than that for ll > 5
(NACA-6620 and -6820). Moreover, the QA values for the four cases are similar.

The distribution of the velocity u, TKE, hlocal, and WSS for NACA-6220 and -6820 are
shown in Figure 9. The velocity u for NACA-6220 presents a high acceleration at the airfoil
leading edge, whereas it exhibits a low back flow at the airfoil trailing edge. The TKE
for NACA-6820 is significantly higher than that for NACA-6220 after the airfoil trailing
edge. The above flow feature causes the hlocal for NACA-6220 to be much higher at the
airfoil leading edge than that for NACA-6280. In comparison, the hlocal for NACA-6820
is much higher in the main flow region than that for NACA-6220 owing to the high TKE
distribution. The WSSs also present similar tendencies as the hlocal distributions for NACA-
6220 and -6820, which are also determined by the flow features. In comparison, the partial
differences between the hlocal and the WSS do not cause remarkable variations in the overall
performance, as shown in Figure 8.
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Figure 9. Contours of velocity u, TKE, hlocal, and WSS for NACA-6220 and 6820 airfoils. (a) Velocity
u distributions for NACA 6220 and 6820 (middle surface, uin = 18 m/s). (b) TKE distributions for
NACA 6220 and 6820 (middle surface, uin = 18 m/s). (c) hlocal distributions for NACA 6220 and
6820 (wall surface, uin = 18 m/s). (d) WSS distributions for NACA 6220 and 6820 (wall surface,
uin = 18 m/s).
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3.3. Effect of Airfoil Thickness (tl)

The effect of the airfoil thickness (tl) on the average performance is shown in Figure 10.
The structure diagrams show significant differences among the four cases. The width
increases with the increase in tl, and the average h, ∆PL, and QA are all obviously heightened
with the increase in tl. The average h for 0320, 0330, and 0340 are 9.58%, 21.4%, and 33.8%
higher than that of 0310, respectively. The average ∆PL for 0320, 0330, and 0340 are 38.1%,
113%, and 246.25% higher than that of 0310, respectively. Additionally, the increase in
airfoil thickness is an advantage to improve the PCHE compactness.

The distributions of the velocity u, TKE, hlocal, and WSS for NACA-0310 and 0340 are
shown in Figure 11. The velocity u for NACA-0310 shows a relatively uniform distribution,
owing to the small distribution of the narrow airfoil. In comparison, the velocity u for
NACA-0340 presents a severe acceleration between two rows of the airfoils, owing to the
reduction in the cross-section area by the large width of the airfoils. In addition, the velocity
u distribution shown in the red dotted frame in Figure 11a indicates that although the
large tl causes a high-intensity reverse flow at the airfoil trailing edge, it is inhibited by
the accelerating fluid. NACA-0340 has an extremely higher TKE than NACA-0310 and,
partially, the TKE can be up to 10 times higher. The hlocal and WSS for NACA-0340 present
significant increases at the airfoil leading edge because the increase in the windward area
causes a remarkable jet flow effect. In comparison, the hlocal and NACA-WSS for 0340 are
slightly increased by the interstitial flows.
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3.4. Effects of Horizontal Spacing (Lh) and Vertical Spacing (Lv)

The average performance for different horizontal spacing (Lh) is shown in Figure 12.
The h, ∆PL, and QA slightly decrease with the increase in Lh. The average h values of Lh = 3,
4, and 5 mm are 2.2%, 4.1%, and 6.4% lower than that of Lh = 2 mm, respectively. The
average ∆PL of Lh = 3, 4, and 5 mm are 6.2%, 9.6%, and 12.2% lower than that of Lh = 2 mm,
respectively. From Figure 13, it can be seen that the hlocal and WSS distributions for two
cases (Lh = 2 and 5 mm) are similar around the airfoil walls. This suggests that the variation
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in Lh has no effect on the enhanced heat transfer mechanism, and the variation rate of
the average performance is uniform. This is because of the secondary flow at each airfoil
trailing edge, which leads to a periodic flow redevelopment.

The average performance for different vertical spacings (Lv) is shown in Figure 14.
The average h of Lv = 3, 4, and 5 mm are 4.2%, 6.4%, and 6.6% lower than that of Lv = 2
mm. The average ∆PL of Lv = 3, 4, and 5 mm are 26.3%, 37.1%, and 42% lower than that of
Lv = 2 mm, respectively. The average h and ∆PL show that the performances of Lv = 4, and
5 mm are quite propinquity. It means that when Lv is above 3 mm, the vortices caused by
the airfoils are not coupled to each other anymore. Moreover, the Lv > 3 mm is not suggested
due to the compactness demands. From a comprehensive point, the Lv = 3 mm is suggested
due to the average h being smaller—lower than that of Lv = 2 mm, and the average ∆PL
is significantly lower than that of Lv = 2 mm. The global distributions of the velocity u,
TKE, hlocal, and WSS for Lv = 2 mm in Figure 15, also show that the disturbed flow and
turbulent pulsation between the two rows of the airfoils are superimposed, fundamentally
causing the heat transfer and flow resistance to increase. In comparison, the corresponding
distribution for Lv = 5 mm suggests that the complex flow features caused by the airfoils
are independent of each other.
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uin = 18 m/s).
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4. Conclusions

In this study, airfoil fins PCHEs were employed as micro gas turbine recuperators for
extended-range electric vehicles, and the thermo-hydraulic performances of PCHE channels
with airfoil fins were numerically studied. Five geometric parameters, i.e., arc height (hl),
maximum arc height position (ll), airfoil thickness (tl) horizontal spacing (Lh), and vertical
spacing (Lv) were examined in detail, and the enhanced heat transfer mechanism was
analyzed. The main conclusions are summarized as follows:

(1) The heat transfer and the flow resistance are mainly increased at the airfoil leading
edge owing to the flow jet. A secondary vortex is produced at the airfoil trailing
edge, causing a violent turbulent pulsation; however, it has a minor effect on the heat
transfer improvement.

(2) Among the five geometrical parameters, the airfoil thickness (tl) is the most significant.
The arc height (hl) and the vertical spacing (Lv) are moderately significant, whereas
the maximum arc height position (ll) and the horizontal spacing (Lh) are almost in-
significant to the thermo-hydraulic performance. Moreover, only the airfoil thickness
has a significant effect on the PCHE compactness.

(3) Two solutions (NACA-6230 and -3220) were selected for their better thermal per-
formance and smaller pressure drop, respectively, with Lh = 2 mm and Lv = 2 or
3 mm.
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Nomenclature

A Area (m2)
C1, C2 Realizable k-εmodel constants
Cp Specific heat (J/kg/K)
E Internal energy (J/kg)
h Heat transfer coefficient (W/m2/K)
L Length (m)
Lh, Lv Horizontal and vertical spacing (mm)
Ll, hl, ll, tl Airfoil chord, arc height, maximum are height position and airfoil thickness
T Temperature (K)
TKE Turbulent kinetic energy (J/kg)
P Pressure (Pa)
PCHE Printed circuit heat exchanger
Pr Prandtl number
Q Heat flux (W)
u, v, w Streamwise, transverse, and vertical velocity components (m/s)
WSS Wall shear stress
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Greek letters
ε Turbulence dissipation rate (m3/s2)
λ Thermal conductivity (W/m/K)
µ Dynamic viscosity (kg/m/s)
ρ Density of fluid (kg/m3)
Subscripts
in, out Inlet and outlet
i, j, k Directions of the coordinate system
wall Wall
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