Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = N-trimethylsilyl-N-methyl trifluoroacetamide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 6380 KiB  
Article
Metabolic Responses of Amaranthus caudatus Roots and Leaves to Zinc Stress
by Natalia Osmolovskaya, Tatiana Bilova, Anastasia Gurina, Anastasia Orlova, Viet D. Vu, Stanislav Sukhikh, Tatiana Zhilkina, Nadezhda Frolova, Elena Tarakhovskaya, Anastasia Kamionskaya and Andrej Frolov
Plants 2025, 14(14), 2119; https://doi.org/10.3390/plants14142119 - 9 Jul 2025
Viewed by 481
Abstract
In recent decades, heavy metal pollution has become a significant environmental stress factor. Plants are characterized by high biochemical plasticity and can adjust their metabolism to ensure survival under a changing environment. Here we report, to our knowledge, the first gas chromatography-mass spectrometry [...] Read more.
In recent decades, heavy metal pollution has become a significant environmental stress factor. Plants are characterized by high biochemical plasticity and can adjust their metabolism to ensure survival under a changing environment. Here we report, to our knowledge, the first gas chromatography-mass spectrometry (GC-MS)-based metabolomics study of Zn-induced stress responses in Amaranthus caudatus plants. The study was performed with root and leaf aqueous methanolic extracts after their lyophilization and sequential derivatization with methoxylamine hydrochloride and N-methyl-N-(trimethylsilyl)trifluoroacetamide. In total, 419 derivatives were detected in the samples, and 144 of them could be putatively annotated. The metabolic shifts in seven-week-old A. caudatus plants in response to a seven-day treatment with 300 µmol/L ZnSO4·7H2O in nutrient solution were organ-specific and more pronounced in roots. Most of the responsive metabolites were up-regulated and dominated by sugars and sugar acids. The revealed effects could be attributed to the involvement of these metabolites in osmotic regulation, antioxidant protection and Zn2+ complexation. A 59-fold up-regulation of gluconic acid in roots distinctly indicated enhanced glucose oxidation due to oxidative stress upon the Zn treatment. Gluconic acid might be further employed in Zn2+ complexation. Pronounced Zn-induced up-regulation of salicylic acid in roots and shoots suggested a key role of this hormone in stress signaling and activation of Zn stress tolerance mechanisms. Overall, our study provides the first insight into the general trends of Zn-induced biochemical rearrangements and main adaptive metabolic shifts in A. caudatus. Full article
Show Figures

Figure 1

14 pages, 1302 KiB  
Article
Comparison of Derivatization Methods for Groomed Latent Print Residues Analysis via Gas Chromatography
by Jessica Kindell and Candice Bridge
Forensic Sci. 2023, 3(2), 302-315; https://doi.org/10.3390/forensicsci3020023 - 17 May 2023
Cited by 1 | Viewed by 2467
Abstract
The practice of latent print analysis is comprised of a visual examination and the comparison of the fingerprint pattern from a questioned print to an exemplar(s). When a questioned print is either smudged or contains little pattern detail, the print comparison would be [...] Read more.
The practice of latent print analysis is comprised of a visual examination and the comparison of the fingerprint pattern from a questioned print to an exemplar(s). When a questioned print is either smudged or contains little pattern detail, the print comparison would be considered an inconclusive determination. However, in these scenarios, the latent print residues (LPRs) could provide associative information to supplement the current ACE-V (Analysis, Comparison, Examination-Verification) process. Advancements using analytical techniques allow for the analysis of LPR chemistry; however, derivatization is generally required to increase the abundance of components not traditionally observed in gas chromatography. This study aimed to determine whether two derivatization reagents, boron trifluoride in methanol (BF3-MeOH) and N-methyl-N-(trimethylsilyl)trifluoroacetamide (MSTFA), provide a better recovery of LPR components from a porous or non-porous substrate. Five volunteers deposited groomed latent print samples onto two substrates: a microfiber filter (porous) and a microscope slide (non-porous). The residues were derivatized or evaporated prior to the gas chromatography-mass spectrometry (GC-MS) analysis. The percent recoveries were higher, >83%, in the DCM extracted samples for both substrates compared to those samples prepared in hexanes. DCM/MSTFA derivatization provided the recovery of fatty acids that ranged from 20 to 30% for both substrates and a recovery of squalene at a rate of 2.37% for the filter sample and 4.2% for the slide sample. These rates were higher than the recovery rates obtained for the hexanes/BF3-MeOH-derivatized samples, with a range of 1–8% for the fatty acids recovery rates and 0.6–0.85% for squalene from both substrates. Overall, the MSTFA derivatization reagent produced higher recoveries for LPR on porous and non-porous substrates while providing a LPR chromatographic profile similar to that of a non-derivatized sample. The use of DCM as a solvent provided a wider range of LPR components recovered than hexanes and, thus, should be used as the extraction solvent when derivatizing samples, regardless of the substrate. Full article
Show Figures

Figure 1

17 pages, 2518 KiB  
Article
GC-MS Studies on Derivatization of Creatinine and Creatine by BSTFA and Their Measurement in Human Urine
by Olga Begou, Kathrin Weber, Bibiana Beckmann and Dimitrios Tsikas
Molecules 2021, 26(11), 3206; https://doi.org/10.3390/molecules26113206 - 27 May 2021
Cited by 5 | Viewed by 5369
Abstract
In consideration of its relatively constant urinary excretion rate, creatinine (2-amino-1-methyl-5H-imidazol-4-one, MW 113.1) in urine is a useful endogenous biochemical parameter to correct the urinary excretion rate of numerous endogenous and exogenous substances. Reliable measurement of creatinine by gas chromatography (GC)-based [...] Read more.
In consideration of its relatively constant urinary excretion rate, creatinine (2-amino-1-methyl-5H-imidazol-4-one, MW 113.1) in urine is a useful endogenous biochemical parameter to correct the urinary excretion rate of numerous endogenous and exogenous substances. Reliable measurement of creatinine by gas chromatography (GC)-based methods requires derivatization of its amine and keto groups. Creatinine exists in equilibrium with its open form creatine (methylguanidoacetic acid, MW 131.1), which has a guanidine and a carboxylic group. Trimethylsilylation and trifluoroacetylation of creatinine and creatine are the oldest reported derivatization methods for their GC-mass spectrometry (MS) analysis in human serum using flame- or electron-ionization. We performed GC-MS studies on the derivatization of creatinine (d0-creatinine), [methylo-2H3]creatinine (d3-creatinine, internal standard) and creatine (d0-creatine) with N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) using standard derivatization conditions (60 min, 60 °C), yet in the absence of any base. Reaction products were characterized both in the negative-ion chemical ionization (NICI) and in the positive-ion chemical ionization (PICI) mode. Creatinine and creatine reacted with BSTFA to form several derivatives. Their early eluting N,N,O-tris(trimethylsilyl) derivatives (8.9 min) were found to be useful for the precise and accurate measurement of the sum of creatinine and creatine in human urine (10 µL, up to 20 mM) by selected-ion monitoring (SIM) of m/z 271 (d0-creatinine/d0-creatine) and m/z 274 (d3-creatinine) in the NICI mode. In the PICI mode, SIM of m/z 256, m/z 259, m/z 272 and m/z 275 was performed. BSTFA derivatization of d0-creatine from a freshly prepared solution in distilled water resulted in formation of two lMate-eluting derivatives (14.08 min, 14.72 min), presumably creatinyl-creatinine, with the creatininyl residue existing in its enol form (14.08 min) and keto form (14.72 min). Our results suggest that BSTFA derivatization does not allow specific analysis of creatine and creatinine by GC-MS. Preliminary analyses suggest that pentafluoropropionic anhydride (PFPA) is also not useful for the measurement of creatinine in the presence of creatine. Both BSTFA and PFPA facilitate the conversion of creatine to creatinine. Specific measurement of creatinine in urine is possible by using pentafluorobenzyl bromide in aqueous acetone. Full article
(This article belongs to the Special Issue Derivatization in Analytical Chemistry)
Show Figures

Figure 1

18 pages, 2622 KiB  
Article
Gas Chromatography–Mass Spectrometry Based Approach for the Determination of Methionine-Related Sulfur-Containing Compounds in Human Saliva
by Justyna Piechocka, Monika Wieczorek and Rafał Głowacki
Int. J. Mol. Sci. 2020, 21(23), 9252; https://doi.org/10.3390/ijms21239252 - 4 Dec 2020
Cited by 29 | Viewed by 3590
Abstract
Gas chromatography–mass spectrometry technique (GC-MS) is mainly recognized as a tool of first choice when volatile compounds are determined. Here, we provide the credible evidence that its application in analysis can be extended to non-volatile sulfur-containing compounds, to which methionine (Met), homocysteine (Hcy), [...] Read more.
Gas chromatography–mass spectrometry technique (GC-MS) is mainly recognized as a tool of first choice when volatile compounds are determined. Here, we provide the credible evidence that its application in analysis can be extended to non-volatile sulfur-containing compounds, to which methionine (Met), homocysteine (Hcy), homocysteine thiolactone (HTL), and cysteine (Cys) belong. To prove this point, the first method, based on GC-MS, for the identification and quantification of Met-related compounds in human saliva, has been elaborated. The assay involves simultaneous disulfides reduction with tris(2-carboxyethyl)phosphine (TCEP) and acetonitrile (MeCN) deproteinization, followed by preconcentration by drying under vacuum and treatment of the residue with a derivatizing mixture containing anhydrous pyridine, N-trimethylsilyl-N-methyl trifluoroacetamide (MSTFA), and trimethylchlorosilane (TMCS). The validity of the method was demonstrated based upon US FDA recommendations. The assay linearity was observed over the range of 0.5–20 µmol L−1 for Met, Hcy, Cys, and 1–20 µmol L−1 for HTL in saliva. The limit of quantification (LOQ) equals 0.1 µmol L−1 for Met, Hcy, Cys, while its value for HTL was 0.05 µmol L−1. The method was successfully applied to saliva samples donated by apparently healthy volunteers (n = 10). Full article
Show Figures

Figure 1

16 pages, 1760 KiB  
Article
2-(3-Hydroxy-5-phosphonooxymethyl-2-methyl-4-pyridyl)-1,3-thiazolidine-4-carboxylic Acid, Novel Metabolite of Pyridoxal 5′-Phosphate and Cysteine Is Present in Human Plasma—Chromatographic Investigations
by Justyna Piechocka, Monika Wrońska, Iwona E. Głowacka and Rafał Głowacki
Int. J. Mol. Sci. 2020, 21(10), 3548; https://doi.org/10.3390/ijms21103548 - 18 May 2020
Cited by 6 | Viewed by 3699
Abstract
It is well-established that aminothiols, to which cysteine (Cys) belongs, are highly reactive towards aldehydes in an aqueous environment, forming substituted thiazolidine carboxylic acids. This report provides evidence that formation of the product containing a thiazolidine ring through non-enzymatic condensation of Cys and [...] Read more.
It is well-established that aminothiols, to which cysteine (Cys) belongs, are highly reactive towards aldehydes in an aqueous environment, forming substituted thiazolidine carboxylic acids. This report provides evidence that formation of the product containing a thiazolidine ring through non-enzymatic condensation of Cys and an active form of vitamin B6 pyridoxal 5′-phosphate (PLP) occurs in vivo in humans. To prove this point, a new method, based on a gas chromatography coupled with mass spectrometry (GC-MS), has been designed to identify and quantify Cys and PLP adduct, 2-(3-hydroxy-5-phosphonooxymethyl-2-methyl-4-pyridyl)-1,3-thiazolidine-4-carboxylic acid (HPPTCA) in human plasma. The GC-MS assay relies on sample deproteinization by ultrafiltration over cut-off membranes and preconcentration by drying under vacuum, followed by treatment of the residue with derivatization mixture containing anhydrous pyridine, N-trimethylsilyl-N-methyl trifluoroacetamide (MSTFA) and trimethylchlorosilane (TMCS). The method quantifies HPPTCA in a linear range from 1 to 20 µmol L−1, where the lowest standard on the calibration curve refers to the limit of quantification (LOQ). The validity of the method was demonstrated. Furthermore, the method was successfully applied to plasma samples donated by apparently healthy volunteers and breast cancer patients. The GC-MS assay provides a new tool that will hopefully facilitate studies on the role of HPPTCA in living systems. Full article
(This article belongs to the Special Issue Amino Acids Transport and Metabolism 3.0)
Show Figures

Graphical abstract

Back to TopTop