Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = Montivipera bornmuelleri

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 4461 KiB  
Article
Neuro- and Cardiovascular Activities of Montivipera bornmuelleri Snake Venom
by Christina Sahyoun, Wojciech Krezel, César Mattei, Jean-Marc Sabatier, Christian Legros, Ziad Fajloun and Mohamad Rima
Biology 2022, 11(6), 888; https://doi.org/10.3390/biology11060888 - 9 Jun 2022
Cited by 8 | Viewed by 3023
Abstract
The complications following snake bite envenoming are due to the venom’s biological activities, which can act on different systems of the prey. These activities arise from the fact that snake venoms are rich in bioactive molecules, which are also of interest for designing [...] Read more.
The complications following snake bite envenoming are due to the venom’s biological activities, which can act on different systems of the prey. These activities arise from the fact that snake venoms are rich in bioactive molecules, which are also of interest for designing drugs. The venom of Montivipera bornmuelleri, known as the Lebanon viper, has been shown to exert antibacterial, anticancer, and immunomodulatory effects. However, the venom’s activity on the nervous system has not yet been studied, and its effect on the cardiovascular system needs further investigation. Because zebrafish is a convenient model to study tissue alterations induced by toxic agents, we challenged it with the venom of Montivipera bornmuelleri. We show that this venom leads to developmental toxicity but not teratogenicity in zebrafish embryos. The venom also induces neurotoxic effects and disrupts the zebrafish cardiovascular system, leading to heartbeat rate reduction and hemorrhage. Our findings demonstrate the potential neurotoxicity and cardiotoxicity of M. bornmuelleri’s venom, suggesting a multitarget strategy during envenomation. Full article
(This article belongs to the Special Issue Frontiers in Neurotoxicology)
Show Figures

Figure 1

11 pages, 1152 KiB  
Article
Montivipera bornmuelleri Venom: Inhibitory Effect on Staphylococcus epidermidis and Escherichia coli F1F0-ATPases and Cytotoxicity on HCT116 Cancer Cell Lines
by Milena Kfoury, Charbel Mouawad, Mariam Rifi, Riyad Sadek, Jean-Marc Sabatier, Hala Nehme and Ziad Fajloun
Sci 2021, 3(3), 31; https://doi.org/10.3390/sci3030031 - 14 Jul 2021
Cited by 1 | Viewed by 4361
Abstract
In this work, we pursued the biological characterization of the venom of Montivipera bornmuelleri, a viper from the Lebanese mountains. In relation to its antibacterial potential, the inhibitory effect of this venom on the F1F0-ATPase enzymes of Gram-positive [...] Read more.
In this work, we pursued the biological characterization of the venom of Montivipera bornmuelleri, a viper from the Lebanese mountains. In relation to its antibacterial potential, the inhibitory effect of this venom on the F1F0-ATPase enzymes of Gram-positive Staphylocoocus epidermidis and Gram-negative Escherichia coli bacteria was examined. In order to determine the degree of cytotoxicity of the venom on the HCT116 human colon cancer cell lines, the biological MTT proliferation and cell viability test were implemented. After validation of the enzymatic F1F0-ATPase model by the spectrophotometric method, using quercetin as the reference ligand, results revealed that M. bornmuelleri venom is able to inhibit the activity of the enzyme of these two bacteria with a concentration of the order of 100–150 µg/mL. In addition, a venom concentration of 10 µg/mL was sufficient to kill the totality of HCT116 cell lines cultivated in vitro. These data show that M. bornmuelleri venom is a mixture of diverse molecules presenting activities of interest, and is a potential source to explore in order to discover new drug candidates. Full article
Show Figures

Figure 1

17 pages, 761 KiB  
Review
Vipers of the Middle East: A Rich Source of Bioactive Molecules
by Mohamad Rima, Seyedeh Maryam Alavi Naini, Marc Karam, Riyad Sadek, Jean-Marc Sabatier and Ziad Fajloun
Molecules 2018, 23(10), 2721; https://doi.org/10.3390/molecules23102721 - 22 Oct 2018
Cited by 15 | Viewed by 7191
Abstract
Snake venom serves as a tool of defense against threat and helps in prey digestion. It consists of a mixture of enzymes, such as phospholipase A2, metalloproteases, and l-amino acid oxidase, and toxins, including neurotoxins and cytotoxins. Beside their toxicity, venom components [...] Read more.
Snake venom serves as a tool of defense against threat and helps in prey digestion. It consists of a mixture of enzymes, such as phospholipase A2, metalloproteases, and l-amino acid oxidase, and toxins, including neurotoxins and cytotoxins. Beside their toxicity, venom components possess many pharmacological effects and have been used to design drugs and as biomarkers of diseases. Viperidae is one family of venomous snakes that is found nearly worldwide. However, three main vipers exist in the Middle Eastern region: Montivipera bornmuelleri, Macrovipera lebetina, and Vipera (Daboia) palaestinae. The venoms of these vipers have been the subject of many studies and are considered as a promising source of bioactive molecules. In this review, we present an overview of these three vipers, with a special focus on their venom composition as well as their biological activities, and we discuss further frameworks for the exploration of each venom. Full article
Show Figures

Graphical abstract

Back to TopTop