Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = Mo2NiB2-Ni cermets

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 7390 KiB  
Review
Undoped Sr2MMoO6 Double Perovskite Molybdates (M = Ni, Mg, Fe) as Promising Anode Materials for Solid Oxide Fuel Cells
by Lubov Skutina, Elena Filonova, Dmitry Medvedev and Antoine Maignan
Materials 2021, 14(7), 1715; https://doi.org/10.3390/ma14071715 - 31 Mar 2021
Cited by 51 | Viewed by 6267
Abstract
The chemical design of new functional materials for solid oxide fuel cells (SOFCs) is of great interest as a means for overcoming the disadvantages of traditional materials. Redox stability, carbon deposition and sulfur poisoning of the anodes are positioned as the main processes [...] Read more.
The chemical design of new functional materials for solid oxide fuel cells (SOFCs) is of great interest as a means for overcoming the disadvantages of traditional materials. Redox stability, carbon deposition and sulfur poisoning of the anodes are positioned as the main processes that result in the degradation of SOFC performance. In this regard, double perovskite molybdates are possible alternatives to conventional Ni-based cermets. The present review provides the fundamental properties of four members: Sr2NiMoO6-δ, Sr2MgMoO6-δ, Sr2FeMoO6-δ and Sr2Fe1.5Mo0.5O6-δ. These properties vary greatly depending on the type and concentration of the 3d-element occupying the B-position of A2BB’O6. The main emphasis is devoted to: (i) the synthesis features of undoped double molybdates, (ii) their electrical conductivity and thermal behaviors in both oxidizing and reducing atmospheres, as well as (iii) their chemical compatibility with respect to other functional SOFC materials and components of gas atmospheres. The information provided can serve as the basis for the design of efficient fuel electrodes prepared from complex oxides with layered structures. Full article
(This article belongs to the Special Issue Advanced Functional Materials for Solid Oxide Electrochemical Cells)
Show Figures

Graphical abstract

16 pages, 38203 KiB  
Article
Comparison of Structure and Properties of Mo2FeB2-Based Cermets Prepared by Welding Metallurgy and Vacuum Sintering
by Hu Xu, Junsheng Sun, Jun Jin, Jijun Song and Chi Wang
Materials 2021, 14(1), 46; https://doi.org/10.3390/ma14010046 - 24 Dec 2020
Cited by 7 | Viewed by 2201
Abstract
At present, most Mo2FeB2-based cermets are prepared by vacuum sintering. However, vacuum sintering is only suitable for ordinary cylinder and cuboid workpieces, and it is difficult to apply to large curved surface and large size workpieces. Therefore, in order [...] Read more.
At present, most Mo2FeB2-based cermets are prepared by vacuum sintering. However, vacuum sintering is only suitable for ordinary cylinder and cuboid workpieces, and it is difficult to apply to large curved surface and large size workpieces. Therefore, in order to improve the flexibility of preparing Mo2FeB2 cermet, a flux cored wire with 70% filling rate, 304 stainless steel, 60 wt% Mo powder and 40 wt% FeB powder was prepared. Mo2FeB2 cermet was prepared by an arc cladding welding metallurgy method with flux cored wire. In this paper, the microstructure, phase evolution, hardness, wear resistance and corrosion resistance of Mo2FeB2 cermets prepared by the vacuum sintering (VM-Mo2FeB2) and arc cladding welding metallurgy method (WM-Mo2FeB2) were systematically studied. The results show that VM-Mo2FeB2 is composed of Mo2FeB2 and γ-CrFeNi.WM-Mo2FeB2 is composed of Mo2FeB2, NiCrFe, MoCrFe and Cr2B3. The volume fraction of hard phase in WM-Mo2FeB2 is lower than that of VM-Mo2FeB2, and its hardness and corrosion resistance are also slightly lower than that of VM-Mo2FeB2, but there are obvious pores in the microstructure of VM-Mo2FeB2, which affects its properties. The results show that WM-Mo2FeB2 has good diffusion and metallurgical bonding with the matrix and has no obvious pores. The microstructure is compact and the wear resistance is better than that of VM-Mo2FeB2. Full article
Show Figures

Figure 1

15 pages, 14689 KiB  
Article
HVOF Sprayed Fe-Based Wear-Resistant Coatings with Carbide Reinforcement, Synthesized In Situ and by Mechanically Activated Synthesis
by Dmytro Tkachivskyi, Kristjan Juhani, Andrei Surženkov, Priit Kulu, Tomáš Tesař, Radek Mušálek, František Lukáč, Jakub Antoš, Marek Vostřák, Maksim Antonov and Dmitri Goljandin
Coatings 2020, 10(11), 1092; https://doi.org/10.3390/coatings10111092 - 14 Nov 2020
Cited by 3 | Viewed by 3624
Abstract
The aims of this study were: (1) to produce composite coatings by high velocity oxy fuel (HVOF) spraying with steel matrix reinforced by cermets (a) Cr3C2–20%Ni and (b) TiC–20%NiMo, manufactured by mechanically activated synthesis (MAS); (2) to synthesize in [...] Read more.
The aims of this study were: (1) to produce composite coatings by high velocity oxy fuel (HVOF) spraying with steel matrix reinforced by cermets (a) Cr3C2–20%Ni and (b) TiC–20%NiMo, manufactured by mechanically activated synthesis (MAS); (2) to synthesize in situ a carbide reinforcement for iron matrix from a mixture of titanium and carbon during HVOF reactive thermal spraying (RTS); (3) to compare the wear resistance of produced coatings. As a reference, HVOF sprayed coatings from commercial Cr3C2–25%NiCr (Amperit 588.074) and AISI 316L were utilized. Study of microstructure revealed the inhomogeneity of the Cr-based MAS coating; the Ti-based MAS coating had typical carbide granular structure, and the Ti-based RTS coating possessed elongated structures of TiC. The X-ray diffraction revealed two main phases in the Cr-based MAS coating: Cr3C2 and austenite, and two phases in the Ti-based coatings: TiC and austenite. Among the studied coatings, the Cr-based MAS coating demonstrated the highest low-force hardness (490 HV0.3). During the abrasive rubber wheel test (ASTM G65), the Ti-based MAS coating showed the best wear resistance, followed by Cr3C2–25%NiCr and Ti-based RTS coating. In the abrasive–erosive test (GOST 23.201-78), the Ti-based MAS coating was 44% better than Cr3C2–25%NiCr coating. The Ti-based RTS coating was 11% more wear resistant than the reference Cr3C2–25%NiCr coating. Full article
Show Figures

Figure 1

18 pages, 7208 KiB  
Article
The Effect of Laser Power on the Properties of M3B2-Type Boride-Based Cermet Coatings Prepared by Laser Cladding Synthesis
by Zhaowei Hu, Wenge Li and Yuantao Zhao
Materials 2020, 13(8), 1867; https://doi.org/10.3390/ma13081867 - 16 Apr 2020
Cited by 12 | Viewed by 2891
Abstract
Boride-based cermet can serve as a good protective coating for low-corrosion and wear-resistant materials, such as carbon steels, due to their mechanical and chemical properties. In this study, M3B2 (M: Mo, Ni, Fe, and Cr) boride-based cermet coatings were fabricated [...] Read more.
Boride-based cermet can serve as a good protective coating for low-corrosion and wear-resistant materials, such as carbon steels, due to their mechanical and chemical properties. In this study, M3B2 (M: Mo, Ni, Fe, and Cr) boride-based cermet coatings were fabricated on Q235 steel with mixed powders of Mo, B, Ni60, and Cr by laser cladding synthesis, and the effects of laser power on the properties of the cermet layer were investigated. Three laser powers (2200, 2500, and 2800 W) were used at the same scanning speed. The X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS) analysis confirmed that all the coatings were composed of M3B2-type borides and {Fe, Ni} alloys. The micro-hardness, corrosion, and frictional experiments showed that the cermet coatings enhanced the corresponding performances of the Q235 steels at the three laser powers. However, the micro-hardness of the coatings decreased as the power increased, and the maximum micro-hardness value was 1166.3 HV (Vickers Hardness). The results of the corrosion and frictional experiments showed that the best performance was obtained at a laser power of 2500 W, followed by 2800 and 2200 W. Full article
(This article belongs to the Special Issue Advanced Coatings for Corrosion Protection)
Show Figures

Figure 1

14 pages, 5170 KiB  
Article
Investigation on Microstructure, Hardness, and Corrosion Resistance of Mo–Ni–B Coatings Prepared by Laser Cladding Technique
by Xiaojie Ni, Shengze Wang, Yuantao Zhao, Wenge Li and Xiong Jiao
Coatings 2019, 9(12), 856; https://doi.org/10.3390/coatings9120856 - 13 Dec 2019
Cited by 7 | Viewed by 3222
Abstract
The hard and corrosion resistant coatings of Mo2NiB2 cermet were prepared by the laser cladding technique. The influences of the Mo:B ratio and the laser scanning speed on the microstructure and property of the Mo2NiB2 cermet coatings [...] Read more.
The hard and corrosion resistant coatings of Mo2NiB2 cermet were prepared by the laser cladding technique. The influences of the Mo:B ratio and the laser scanning speed on the microstructure and property of the Mo2NiB2 cermet coatings were investigated. The results showed that the laser scanning speed of 1.5 mm/s and the Mo:B ratio of 1 were more beneficial to the formation of Mo2NiB2 cermet than 2.0 mm/s and 0.8, 1.2, respectively. The amount of the Mo2NiB2 ceramic phases were decreased from the top layer to the bottom layer of the coating. The changes of microstructure and composition led to the changes of hardness and corrosion resistance of the Mo2NiB2 cermet coatings. The coating prepared at the Mo:B ratio of 1 and the scanning speed of 1.5 mm/s possessed the highest hardness, and the hardness gradually decreased from the top layer to the bottom layer of the coating. The formation of Mo2NiB2 and {FeM} phases led to the enhanced corrosion resistance of the Mo2NiB2 cermet coatings, and the coating prepared at the Mo:B ratio of 0.8 possessed the best corrosion resistance and the minimum corrosion current. Full article
Show Figures

Figure 1

14 pages, 12280 KiB  
Article
Microstructure and Properties of M3B2-Type Boride-Based Cermet Coatings Prepared by Laser Cladding Synthesis
by Zhaowei Hu, Wenge Li and Yuantao Zhao
Coatings 2019, 9(8), 476; https://doi.org/10.3390/coatings9080476 - 28 Jul 2019
Cited by 9 | Viewed by 3795
Abstract
Although Q235 steel materials are widely used in offshore engineering, the service life is severely shortened by its inferior resistance to wear and corrosion in harsh marine working environments. Boride-based cermet composites could be a good surface-protective coating to enhance surface hardness, wear [...] Read more.
Although Q235 steel materials are widely used in offshore engineering, the service life is severely shortened by its inferior resistance to wear and corrosion in harsh marine working environments. Boride-based cermet composites could be a good surface-protective coating to enhance surface hardness, wear resistance, and corrosion resistance. M3B2 (M: Mo, Ni, Fe, Cr) boride-based cermet coatings composed of hard ceramics of M3B2-type complex borides and an {Fe, Ni} metal matrix was fabricated on Q235 steels with mixed Mo, Cr, B, and Ni60 powders using a laser cladding synthesis technique. The influences of laser cladding parameters on the microstructure, phase composition, microhardness, and corrosion resistance of the coatings were comprehensively investigated. Results showed that the microstructures of the coatings mainly consisted of three layers, which were, from the top to bottom layer, a metal layer with fewer ceramic phases, a ceramic layer with fewer metal phases, and another metal layer with fewer ceramic phases. The ceramic phases were mainly M3B2-type borides, and the metal phases were mainly {Fe, Ni} alloys. The appearance of Fe-enriching metal phases was due to the supply of Fe elements from Q235 substrates. With squash pretreatment and without a remelting aftertreatment, ceramics uniformly dispersed in the cermet coatings, and their sizes decreased. The results of microhardness showed that the microhardness of the coating first increased and then decreased from the top layer to the bottom layer, and maximum microhardness was obtained in the layer of ceramics with less metal phases. An electrochemical corrosion test showed that the cermet coatings (jcorr = 6.35 μA/cm2) could improve the corrosion resistance of Q235 steels (j = 43.76 μA/cm2) by one order of magnitude. Full article
Show Figures

Figure 1

17 pages, 12306 KiB  
Article
Effects of Mechanical Ball Milling Time on the Microstructure and Mechanical Properties of Mo2NiB2-Ni Cermets
by Lei Zhang, Zhifu Huang, Yangzhen Liu, Yupeng Shen, Kemin Li, Zhen Cao, Zijun Ren and Yongxin Jian
Materials 2019, 12(12), 1926; https://doi.org/10.3390/ma12121926 - 14 Jun 2019
Cited by 34 | Viewed by 3581
Abstract
Mo2NiB2-Ni cermets have been extensively investigated due to their outstanding properties. However, studies have not systematically examined the effect of the powder milling process on the cermets. In this study, Mo, Ni, and B raw powders were subjected to [...] Read more.
Mo2NiB2-Ni cermets have been extensively investigated due to their outstanding properties. However, studies have not systematically examined the effect of the powder milling process on the cermets. In this study, Mo, Ni, and B raw powders were subjected to mechanical ball milling from 1 h to 15 h. XRD patterns of the milled powders confirmed that a new phase was not observed at milling times of 1 h to 15 h. With the increase in the mechanical ball milling time from 1 h to 11 h, raw powders were crushed to small fragments, in addition to a more uniform distribution, and with the increase in the mechanical ball milling time to greater than 11 h, milled powders changed slightly. Mo2NiB2-Ni cermets were fabricated by reaction boronizing sintering using the milled powders at different ball milling times. The milling time significantly affected the microstructure and mechanical properties of Mo2NiB2-Ni cermets. Moreover, the Mo2NiB2 cermet powder subjected to a milling time of 11 h exhibited the finest crystal size and the maximum volume fraction of the Mo2NiB2 hard phase. Furthermore, the cermets with a milling time of 11 h exhibited a maximum hardness and bending strength of 87.6 HRA and 1367.3 MPa, respectively. Full article
Show Figures

Figure 1

Back to TopTop