Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = Micro total analysis systems (μTAS)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 3167 KB  
Communication
Microfluidic Chip with Fiber-Tip Sensors for Synchronously Monitoring Concentration and Temperature of Glucose Solutions
by Jian Qu, Yi Liu, Yan Li, Jinjian Li and Songhe Meng
Sensors 2023, 23(5), 2478; https://doi.org/10.3390/s23052478 - 23 Feb 2023
Cited by 7 | Viewed by 3463
Abstract
Monitoring the properties of fluids in microfluidic chips often requires complex open-space optics technology and expensive equipment. In this work, we introduce dual-parameter optical sensors with fiber tips into the microfluidic chip. Multiple sensors were distributed in each channel of the chip, which [...] Read more.
Monitoring the properties of fluids in microfluidic chips often requires complex open-space optics technology and expensive equipment. In this work, we introduce dual-parameter optical sensors with fiber tips into the microfluidic chip. Multiple sensors were distributed in each channel of the chip, which enabled the real-time monitoring of the concentration and temperature of the microfluidics. The temperature sensitivity and glucose concentration sensitivity could reach 314 pm/°C and −0.678 dB/(g/L), respectively. The hemispherical probe hardly affected the microfluidic flow field. The integrated technology combined the optical fiber sensor with the microfluidic chip and was low cost with high performance. Therefore, we believe that the proposed microfluidic chip integrated with the optical sensor is beneficial for drug discovery, pathological research and material science investigation. The integrated technology has great application potential for micro total analysis systems (μ-TAS). Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

8 pages, 2191 KB  
Article
Precise Droplet Dispensing in Digital Microfluidics with Dumbbell-Shaped Electrodes
by Wei Wang
Micromachines 2022, 13(3), 484; https://doi.org/10.3390/mi13030484 - 20 Mar 2022
Cited by 6 | Viewed by 3666
Abstract
Electro-wetting-on-dielectric (EWOD) enables the manipulation of droplets on a two-dimensional surface, which provides a versatile technique for digital microfluidics at a micro- or nano-scale. However, the deficiency of the dispensing precision has long limited its applications in micro total analysis systems (μ-TAS) where [...] Read more.
Electro-wetting-on-dielectric (EWOD) enables the manipulation of droplets on a two-dimensional surface, which provides a versatile technique for digital microfluidics at a micro- or nano-scale. However, the deficiency of the dispensing precision has long limited its applications in micro total analysis systems (μ-TAS) where the accuracy of assays is largely determined by the volume control of the reagent dosing. This paper proposes optimum electrode designs and carries out characterization experiments to demonstrate the reproducibility of on-chip droplet generation with no extra external apparatus. The coefficient variation of the volumes of consecutively dispensed droplets from a non-refilling reservoir can be limited to below 0.3%, indicating the validity of the new electrode structure in practical applications. Full article
(This article belongs to the Special Issue Digital Microfluidics for Liquid Handling and Biochemical Analysis)
Show Figures

Figure 1

23 pages, 1207 KB  
Review
Micro-Hole Drilling on Glass Substrates—A Review
by Lucas A. Hof and Jana Abou Ziki
Micromachines 2017, 8(2), 53; https://doi.org/10.3390/mi8020053 - 13 Feb 2017
Cited by 116 | Viewed by 16731
Abstract
Glass micromachining is currently becoming essential for the fabrication of micro-devices, including micro- optical-electro-mechanical-systems (MOEMS), miniaturized total analysis systems (μTAS) and microfluidic devices for biosensing. Moreover, glass is radio frequency (RF) transparent, making it an excellent material for sensor and energy transmission devices. [...] Read more.
Glass micromachining is currently becoming essential for the fabrication of micro-devices, including micro- optical-electro-mechanical-systems (MOEMS), miniaturized total analysis systems (μTAS) and microfluidic devices for biosensing. Moreover, glass is radio frequency (RF) transparent, making it an excellent material for sensor and energy transmission devices. Advancements are constantly being made in this field, yet machining smooth through-glass vias (TGVs) with high aspect ratio remains challenging due to poor glass machinability. As TGVs are required for several micro-devices, intensive research is being carried out on numerous glass micromachining technologies. This paper reviews established and emerging technologies for glass micro-hole drilling, describing their principles of operation and characteristics, and their advantages and disadvantages. These technologies are sorted into four machining categories: mechanical, thermal, chemical, and hybrid machining (which combines several machining methods). Achieved features by these methods are summarized in a table and presented in two graphs. We believe that this paper will be a valuable resource for researchers working in the field of glass micromachining as it provides a comprehensive review of the different glass micromachining technologies. It will be a useful guide for advancing these techniques and establishing new hybrid ones, especially since this is the first broad review in this field. Full article
(This article belongs to the Special Issue Glass Micromachining)
Show Figures

Graphical abstract

11 pages, 1275 KB  
Review
Polymer Microfluidics: Simple, Low-Cost Fabrication Process Bridging Academic Lab Research to Commercialized Production
by Chia-Wen Tsao
Micromachines 2016, 7(12), 225; https://doi.org/10.3390/mi7120225 - 10 Dec 2016
Cited by 311 | Viewed by 20443
Abstract
Using polymer materials to fabricate microfluidic devices provides simple, cost effective, and disposal advantages for both lab-on-a-chip (LOC) devices and micro total analysis systems (μTAS). Polydimethylsiloxane (PDMS) elastomer and thermoplastics are the two major polymer materials used in microfluidics. The fabrication of PDMS [...] Read more.
Using polymer materials to fabricate microfluidic devices provides simple, cost effective, and disposal advantages for both lab-on-a-chip (LOC) devices and micro total analysis systems (μTAS). Polydimethylsiloxane (PDMS) elastomer and thermoplastics are the two major polymer materials used in microfluidics. The fabrication of PDMS and thermoplastic microfluidic device can be categorized as front-end polymer microchannel fabrication and post-end microfluidic bonding procedures, respectively. PDMS and thermoplastic materials each have unique advantages and their use is indispensable in polymer microfluidics. Therefore, the proper selection of polymer microfabrication is necessary for the successful application of microfluidics. In this paper, we give a short overview of polymer microfabrication methods for microfluidics and discuss current challenges and future opportunities for research in polymer microfluidics fabrication. We summarize standard approaches, as well as state-of-art polymer microfluidic fabrication methods. Currently, the polymer microfluidic device is at the stage of technology transition from research labs to commercial production. Thus, critical consideration is also required with respect to the commercialization aspects of fabricating polymer microfluidics. This article provides easy-to-understand illustrations and targets to assist the research community in selecting proper polymer microfabrication strategies in microfluidics. Full article
(This article belongs to the Special Issue Insights and Advancements in Microfluidics)
Show Figures

Figure 1

21 pages, 3390 KB  
Review
Microfluidics Integrated Biosensors: A Leading Technology towards Lab-on-a-Chip and Sensing Applications
by George Luka, Ali Ahmadi, Homayoun Najjaran, Evangelyn Alocilja, Maria DeRosa, Kirsten Wolthers, Ahmed Malki, Hassan Aziz, Asmaa Althani and Mina Hoorfar
Sensors 2015, 15(12), 30011-30031; https://doi.org/10.3390/s151229783 - 1 Dec 2015
Cited by 480 | Viewed by 36154
Abstract
A biosensor can be defined as a compact analytical device or unit incorporating a biological or biologically derived sensitive recognition element immobilized on a physicochemical transducer to measure one or more analytes. Microfluidic systems, on the other hand, provide throughput processing, enhance transport [...] Read more.
A biosensor can be defined as a compact analytical device or unit incorporating a biological or biologically derived sensitive recognition element immobilized on a physicochemical transducer to measure one or more analytes. Microfluidic systems, on the other hand, provide throughput processing, enhance transport for controlling the flow conditions, increase the mixing rate of different reagents, reduce sample and reagents volume (down to nanoliter), increase sensitivity of detection, and utilize the same platform for both sample preparation and detection. In view of these advantages, the integration of microfluidic and biosensor technologies provides the ability to merge chemical and biological components into a single platform and offers new opportunities for future biosensing applications including portability, disposability, real-time detection, unprecedented accuracies, and simultaneous analysis of different analytes in a single device. This review aims at representing advances and achievements in the field of microfluidic-based biosensing. The review also presents examples extracted from the literature to demonstrate the advantages of merging microfluidic and biosensing technologies and illustrate the versatility that such integration promises in the future biosensing for emerging areas of biological engineering, biomedical studies, point-of-care diagnostics, environmental monitoring, and precision agriculture. Full article
(This article belongs to the Section Biosensors)
Show Figures

Figure 1

8 pages, 311 KB  
Communication
A Concept for a Sensitive Micro Total Analysis System for High Throughput Fluorescence Imaging
by Arthur Rabner and Yosi Shacham
Sensors 2006, 6(4), 341-349; https://doi.org/10.3390/S6040341 - 7 Apr 2006
Cited by 4 | Viewed by 7688
Abstract
This paper discusses possible methods for on-chip fluorescent imaging forintegrated bio-sensors. The integration of optical and electro-optical accessories, accordingto suggested methods, can improve the performance of fluorescence imaging. It can boostthe signal to background ratio by a few orders of magnitudes in comparison [...] Read more.
This paper discusses possible methods for on-chip fluorescent imaging forintegrated bio-sensors. The integration of optical and electro-optical accessories, accordingto suggested methods, can improve the performance of fluorescence imaging. It can boostthe signal to background ratio by a few orders of magnitudes in comparison to conventionaldiscrete setups. The methods that are present in this paper are oriented towards buildingreproducible arrays for high-throughput micro total analysis systems (μTAS). The firstmethod relates to side illumination of the fluorescent material placed into micro-compartments of the lab-on-chip. Its significance is in high utilization of excitation energyfor low concentration of fluorescent material. The utilization of a transparent μLED chip,for the second method, allows the placement of the excitation light sources on the sameoptical axis with emission detector, such that the excitation and emission rays are directedcontroversly. The third method presents a spatial filtering of the excitation background. Full article
Show Figures

Back to TopTop