Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Meretrix meretrix Linnaeus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1534 KiB  
Article
Structural and Immunological Activity Characterization of a Polysaccharide Isolated from Meretrix meretrix Linnaeus
by Li Li, Heng Li, Jianying Qian, Yongfeng He, Jialin Zheng, Zhenming Lu, Zhenghong Xu and Jinsong Shi
Mar. Drugs 2016, 14(1), 6; https://doi.org/10.3390/md14010006 - 29 Dec 2015
Cited by 21 | Viewed by 6477
Abstract
Polysaccharides from marine clams perform various biological activities, whereas information on structure is scarce. Here, a water-soluble polysaccharide MMPX-B2 was isolated from Meretrix meretrix Linnaeus. The proposed structure was deduced through characterization and its immunological activity was investigated. MMPX-B2 consisted of d-glucose [...] Read more.
Polysaccharides from marine clams perform various biological activities, whereas information on structure is scarce. Here, a water-soluble polysaccharide MMPX-B2 was isolated from Meretrix meretrix Linnaeus. The proposed structure was deduced through characterization and its immunological activity was investigated. MMPX-B2 consisted of d-glucose and d-galctose residues at a molar ratio of 3.51:1.00. The average molecular weight of MMPX-B2 was 510 kDa. This polysaccharide possessed a main chain of (1→4)-linked-α-d-glucopyranosyl residues, partially substituted at the C-6 position by a few terminal β-d-galactose residues or branched chains consisting of (1→3)-linked β-d-galactose residues. Preliminary immunological tests in vitro showed that MMPX-B2 could stimulate the murine macrophages to release various cytokines, and the structure-activity relationship was then established. The present study demonstrated the potential immunological activity of MMPX-B2, and provided references for studying the active ingredients in M. meretrix. Full article
(This article belongs to the Collection Marine Polysaccharides)
Show Figures

Graphical abstract

12 pages, 25327 KiB  
Article
Induction of Apoptosis, G0/G1 Phase Arrest and Microtubule Disassembly in K562 Leukemia Cells by Mere15, a Novel Polypeptide from Meretrix meretrix Linnaeus
by Ming Liu, Xiangzhong Zhao, Jin Zhao, Lin Xiao, Haizhou Liu, Cuicui Wang, Linyou Cheng, Ning Wu and Xiukun Lin
Mar. Drugs 2012, 10(11), 2596-2607; https://doi.org/10.3390/md10112596 - 21 Nov 2012
Cited by 27 | Viewed by 8328
Abstract
Mere15 is a novel polypeptide from Meretrix meretrix Linnaeus with cytotoxicity in solid cancer cells. In this study, we investigated its activity on human K562 chronic myelogenous leukemia cells. Mere15 inhibited the growth of K562 cells with IC50 values of 38.2 μg/mL. [...] Read more.
Mere15 is a novel polypeptide from Meretrix meretrix Linnaeus with cytotoxicity in solid cancer cells. In this study, we investigated its activity on human K562 chronic myelogenous leukemia cells. Mere15 inhibited the growth of K562 cells with IC50 values of 38.2 μg/mL. Mere15 also caused concentration dependent induction of apoptosis, with overproduction of reactive oxygen species and loss of mitochondrial membrane potential. Moreover, Mere15 arrested cell cycle progression at G0/G1 phase of K562 cells in a concentration dependent manner. In addition, Mere15 caused the disassembly of the microtubule cytoskeleton in K562 cells and inhibited the polymerization of tubulin in a cell free system via interaction with tubulin. We concluded that Mere15 was cytotoxic to K562 leukemia cells and the cytotoxicity was related to the apoptosis induction, cell cycle arrest and microtubule disassembly. These results implied that Merer15 was a broad spectrum anticancer polypeptide, not only cytotoxic to various solid cancer cells but also to the chronic myelogenous leukemia cells. Mere15 may have therapeutic potential for the treatment of leukemia. Full article
Show Figures

Figure 1

Back to TopTop