Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = MegaMax®800

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 8030 KiB  
Article
Breeding Habitat Suitability Modeling to Inform Management Practices for the European Turtle Dove (Streptopelia turtur) in NE Greece
by Charalambos T. Thoma, Konstantina N. Makridou and Dimitrios E. Bakaloudis
Ecologies 2025, 6(2), 25; https://doi.org/10.3390/ecologies6020025 - 28 Mar 2025
Viewed by 2221
Abstract
The European Turtle Dove (Streptopelia turtur) has experienced significant population declines across its European breeding range, primarily due to habitat loss. Our study aimed to provide a new reference for the conservation of Turtle Doves in Evros province, a biodiversity hotspot. [...] Read more.
The European Turtle Dove (Streptopelia turtur) has experienced significant population declines across its European breeding range, primarily due to habitat loss. Our study aimed to provide a new reference for the conservation of Turtle Doves in Evros province, a biodiversity hotspot. We used Maximum Entropy (MaxEnt) modeling to assess Turtle Dove breeding habitat suitability and account for the area of suitable habitats that is not protected or have been affected by a recent mega-fire. The best performing model identified tree cover density, the percent cover of permanently irrigated land and heterogenous agricultural areas, proximity to non-irrigated agricultural land, and forest edge length as the most important predictors of habitat suitability, signifying the importance of an interplay between open and forested land. Our results indicate that 39% of the study area provides a suitable breeding habitat, with the majority located in central and southeastern regions. Conversely, irrigated agricultural areas in the northeast are unsuitable. We found that more than 60% of suitable habitats fall within the Natura 2000 network, underscoring the importance of protected areas for conservation. However, wildfires pose a major threat, with almost 25% of suitable habitats being affected by a recent mega-fire, highlighting the need for recovery in these areas. Our study provides a foundation for targeted habitat management and restoration efforts in NE Greece and contributes to the broader understanding of the species’ habitat requirements across its breeding range. Full article
Show Figures

Figure 1

15 pages, 2808 KiB  
Article
Unravelling Yield and Yield-Related Traits in Soybean Using GGE Biplot and Path Analysis
by Tonny Obua, Julius Pyton Sserumaga, Phinehas Tukamuhabwa, Mercy Namara, Bruno Awio, Johnson Mugarra, Geoffrey Tusiime and Godfree Chigeza
Agronomy 2024, 14(12), 2826; https://doi.org/10.3390/agronomy14122826 - 27 Nov 2024
Cited by 1 | Viewed by 1403
Abstract
Soybean (Glycine max) is a vital crop for food, animal feed, and industrial products. However, its yield performance is significantly affected by genotype-by-environment interaction (GEI), which complicates the selection of high-yielding, stable varieties. This study aimed to evaluate the yield performance [...] Read more.
Soybean (Glycine max) is a vital crop for food, animal feed, and industrial products. However, its yield performance is significantly affected by genotype-by-environment interaction (GEI), which complicates the selection of high-yielding, stable varieties. This study aimed to evaluate the yield performance and stability of 12 elite soybean varieties across five major production areas in Uganda using GGE biplot and path analysis. The varieties were planted in a randomized complete block design with three replications over two consecutive seasons. Results revealed significant differences in grain yield among the varieties, locations, and their interactions (p < 0.001). The highest-yielding varieties were Maksoy 5N (979 kg ha−1), Maksoy 4N (978 kg ha−1), Maksoy 3N (930 kg ha−1), and Signal (930 kg ha−1). GGE biplot analysis grouped the locations into two mega-environments, with the Maksoy varieties exhibiting greater yield stability compared to Seed Co. varieties. Path analysis showed that traits such as the number of lower internodes, central internode length, and filled pods had the highest positive direct effects on grain yield. This study provides insights into soybean breeding in tropical environments, highlighting traits that can be targeted to improve yield and stability. The findings offer a framework for breeding programs in Uganda and similar agro-ecological regions, promoting more resilient and productive soybean varieties. This study also illustrated the potential advantages of employing more complex mathematical techniques like path analysis to uncover yield and yield-related traits in soybean breeding programs. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

19 pages, 1933 KiB  
Article
Genome-Wide Identification and Expression Analyses of the Chitinase Gene Family in Response to White Mold and Drought Stress in Soybean (Glycine max)
by Peiyun Lv, Chunting Zhang, Ping Xie, Xinyu Yang, Mohamed A. El-Sheikh, Daniel Ingo Hefft, Parvaiz Ahmad, Tuanjie Zhao and Javaid Akhter Bhat
Life 2022, 12(9), 1340; https://doi.org/10.3390/life12091340 - 29 Aug 2022
Cited by 20 | Viewed by 3438
Abstract
Chitinases are enzymes catalyzing the hydrolysis of chitin that are present on the cell wall of fungal pathogens. Here, we identified and characterized the chitinase gene family in cultivated soybean (Glycine max L.) across the whole genome. A total of 38 chitinase [...] Read more.
Chitinases are enzymes catalyzing the hydrolysis of chitin that are present on the cell wall of fungal pathogens. Here, we identified and characterized the chitinase gene family in cultivated soybean (Glycine max L.) across the whole genome. A total of 38 chitinase genes were identified in the whole genome of soybean. Phylogenetic analysis of these chitinases classified them into five separate clusters, I–V. From a broader view, the I–V classes of chitinases are basically divided into two mega-groups (X and Y), and these two big groups have evolved independently. In addition, the chitinases were unevenly and randomly distributed in 17 of the total 20 chromosomes of soybean, and the majority of these chitinase genes contained few introns (≤2). Synteny and duplication analysis showed the major role of tandem duplication in the expansion of the chitinase gene family in soybean. Promoter analysis identified multiple cis-regulatory elements involved in the biotic and abiotic stress response in the upstream regions (1.5 kb) of chitinase genes. Furthermore, qRT-PCR analysis showed that pathogenic and drought stress treatment significantly induces the up-regulation of chitinase genes belonging to specific classes at different time intervals, which further verifies their function in the plant stress response. Hence, both in silico and qRT-PCR analysis revealed the important role of the chitinases in multiple plant defense responses. However, there is a need for extensive research efforts to elucidate the detailed function of chitinase in various plant stresses. In conclusion, our investigation is a detailed and systematic report of whole genome characterization of the chitinase family in soybean. Full article
(This article belongs to the Special Issue Plant Biotic and Abiotic Stresses)
Show Figures

Figure 1

12 pages, 2194 KiB  
Article
Phylogenetic and Expression Studies of Small GTP-Binding Proteins in Solanum lycopersicum Super Strain B
by Hassan S. Al-Zahrani, Tarek A. A. Moussa, Hameed Alsamadany, Rehab M. Hafez and Michael P. Fuller
Plants 2022, 11(5), 641; https://doi.org/10.3390/plants11050641 - 26 Feb 2022
Cited by 2 | Viewed by 2694
Abstract
This investigation involved a comparative analysis of the small GTPase superfamily in S. lycopersicum super strain B compared to their analogues in leguminous and other non-leguminous species. The small GTPases superfamily members were recognized by tBLASTn searches. The sequences of amino acid were [...] Read more.
This investigation involved a comparative analysis of the small GTPase superfamily in S. lycopersicum super strain B compared to their analogues in leguminous and other non-leguminous species. The small GTPases superfamily members were recognized by tBLASTn searches. The sequences of amino acid were aligned using Clustal Omega and the analysis of phylogeny was performed with the MEGA7 package. Protein alignments were applied for all studied species. Three-dimensional models of RABA2, ROP9, and ROP10 from Solanum lycopersicum “Super strain B” were performed. The levels of mRNA of the Rab, Arf, Rop, and Ran subfamilies were detected in aerial tissues vs. roots. Significant divergences were found in the number of members and groups comprising each subfamily of the small GTPases and Glycine max had the highest count. High expression of Rab and Arf proteins was shown in the roots of legumes whilst in non-legume plants, the highest values were recorded in aerial tissues. S. lycopersicum super strain B had the highest expression of Rab and Arf proteins in its aerial tissues, which may indicate that diazotroph strains have supreme activities in the aerial tissues of strain B and act as associated N-fixing bacteria. The phylogenies of the small GTPase superfamily of the studied plants did not reveal asymmetric evolution of the Ra, Arf, Rop, and Ran subfamilies. Multiple sequence alignments derived from each of the Rab, Arf, and Rop proteins of S. lycopersicum super strain B showed a low frequency of substitutions in their domains. GTPases superfamily members have definite functions during infection, delivery, and maintenance of N2-fixing diazotroph but show some alterations in their function among S. lycopersicum super strain B, and other species. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

18 pages, 5677 KiB  
Article
Ground-Based MAX-DOAS Observations of Tropospheric NO2 and HCHO During COVID-19 Lockdown and Spring Festival Over Shanghai, China
by Aimon Tanvir, Zeeshan Javed, Zhu Jian, Sanbao Zhang, Muhammad Bilal, Ruibin Xue, Shanshan Wang and Zhou Bin
Remote Sens. 2021, 13(3), 488; https://doi.org/10.3390/rs13030488 - 30 Jan 2021
Cited by 30 | Viewed by 6222
Abstract
Reduced mobility and less anthropogenic activity under special case circumstances over various parts of the world have pronounced effects on air quality. The objective of this study is to investigate the impact of reduced anthropogenic activity on air quality in the mega city [...] Read more.
Reduced mobility and less anthropogenic activity under special case circumstances over various parts of the world have pronounced effects on air quality. The objective of this study is to investigate the impact of reduced anthropogenic activity on air quality in the mega city of Shanghai, China. Observations from the highly sophisticated multi-axis differential optical absorption spectroscope (MAX-DOAS) instrument were used for nitrogen dioxide (NO2) and formaldehyde (HCHO) column densities. In situ measurements for NO2, ozone (O3), particulate matter (PM2.5) and the air quality index (AQI) were also used. The concentration of trace gases in the atmosphere reduces significantly during annual Spring Festival holidays, whereby mobility is reduced and anthropogenic activities come to a halt. The COVID-19 lockdown during 2020 resulted in a considerable drop in vertical column densities (VCDs) of HCHO and NO2 during lockdown Level-1, which refers to strict lockdown, i.e., strict measures taken to reduce mobility (43% for NO2; 24% for HCHO), and lockdown Level-2, which refers to relaxed lockdown, i.e., when the mobility restrictions were relaxed somehow (20% for NO2; 22% for HCHO), compared with pre-lockdown days, as measured by the MAX-DOAS instrument. However, for 2019, a reduction in VCDs was found only during Level-1 (24% for NO2; 6.62% for HCHO), when the Spring Festival happened. The weekly cycle for NO2 and HCHO depicts no significant effect of weekends on the lockdown. After the start of the Spring Festival, the VCDs of NO2 and HCHO showed a decline for 2019 as well as 2020. Backward trajectories calculated using the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model indicated more air masses coming from the sea after the Spring Festival for 2019 and 2020, implying that a low pollutant load was carried by them. No impact of anthropogenic activity was found on O3 concentration. The results indicate that the ratio of HCHO to NO2 (RFN) fell in the volatile organic compound (VOC)-limited regime. Full article
Show Figures

Graphical abstract

14 pages, 2859 KiB  
Article
Methanol Synthesis with Steel-Mill Gases: Simulation and Practical Testing of Selected Gas Utilization Scenarios
by Kai Girod, Heiko Lohmann, Stefan Schlüter and Stefan Kaluza
Processes 2020, 8(12), 1673; https://doi.org/10.3390/pr8121673 - 17 Dec 2020
Cited by 8 | Viewed by 4555
Abstract
The utilization of CO2-containing steel-mill gases for synthesis of methanol was investigated. Four different scenarios with syngas derived from steel-mill gases were considered. A process model for an industrial methanol production including gas recirculation was applied to provide realistic conditions for [...] Read more.
The utilization of CO2-containing steel-mill gases for synthesis of methanol was investigated. Four different scenarios with syngas derived from steel-mill gases were considered. A process model for an industrial methanol production including gas recirculation was applied to provide realistic conditions for catalyst performance tests. A long-term test series was performed in a close-to-practice setup to demonstrate the stability of the catalyst. In addition, the experimental results were used to discuss the quality of the simulation results. Kinetic parameters of the reactor model were fitted. A comparison of two different kinetic approaches and the experimental results revealed which approach better fits CO-rich or CO2-rich steel-mill gases. Full article
(This article belongs to the Special Issue Heterogeneous Catalysts for CO2 Valorisation)
Show Figures

Figure 1

24 pages, 3590 KiB  
Article
Vegetation and Soil Fire Damage Analysis Based on Species Distribution Modeling Trained with Multispectral Satellite Data
by Carmen Quintano, Alfonso Fernández-Manso, Leonor Calvo and Dar A. Roberts
Remote Sens. 2019, 11(15), 1832; https://doi.org/10.3390/rs11151832 - 6 Aug 2019
Cited by 25 | Viewed by 4872
Abstract
Forest managers demand reliable tools to evaluate post-fire vegetation and soil damage. In this study, we quantify wildfire damage to vegetation and soil based on the analysis of burn severity, using multitemporal and multispectral satellite data and species distribution models, particularly maximum entropy [...] Read more.
Forest managers demand reliable tools to evaluate post-fire vegetation and soil damage. In this study, we quantify wildfire damage to vegetation and soil based on the analysis of burn severity, using multitemporal and multispectral satellite data and species distribution models, particularly maximum entropy (MaxEnt). We studied a mega-wildfire (9000 ha burned) in North-Western Spain, which occurred from 21 to 27 August 2017. Burn severity was measured in the field using the composite burn index (CBI). Burn severity of vegetation and soil layers (CBIveg and CBIsoil) was also differentiated. MaxEnt provided the relative contribution of each pre-fire and post-fire input variable on low, moderate and high burn severity levels, as well as on all severity levels combined (burned area). In addition, it built continuous suitability surfaces from which the burned surface area and burn severity maps were built. The burned area map achieved a high accuracy level (κ = 0.85), but slightly lower accuracy when differentiating the three burn severity classes (κ = 0.81). When the burn severity map was validated using field CBIveg and CBIsoil values we reached lower κ statistic values (0.76 and 0.63, respectively). This study revealed the effectiveness of the proposed multi-temporal MaxEnt based method to map fire damage accurately in Mediterranean ecosystems, providing key information to forest managers. Full article
(This article belongs to the Section Forest Remote Sensing)
Show Figures

Figure 1

Back to TopTop