Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = Madelung formulation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 2152 KiB  
Article
A Quantum Formalism for Abstract Dynamical Systems
by Joan C. Micó
Mathematics 2024, 12(7), 1076; https://doi.org/10.3390/math12071076 - 2 Apr 2024
Viewed by 1631
Abstract
This paper presents a quantum formulation for classical abstract dynamical systems (ADS), defined by coupled sets of first-order differential equations. They are referred to as “abstract” because their dynamical variables can be of different interrelated natures, not necessarily corresponding to physics, such as [...] Read more.
This paper presents a quantum formulation for classical abstract dynamical systems (ADS), defined by coupled sets of first-order differential equations. They are referred to as “abstract” because their dynamical variables can be of different interrelated natures, not necessarily corresponding to physics, such as populations, socioeconomic variables, behavioral variables, etc. A classical linear Hamiltonian can be derived for ADS by using Dirac’s dynamics for singular Hamiltonian systems. Also, a corresponding first-order Schrödinger equation (which involves the existence of a system Planck constant particular of each system) can be derived from this Hamiltonian. However, Madelung’s reinterpretation of quantum mechanics, followed by the Bohm and Hiley work, produces no further information about the mathematical formulation of ADS. However, a classical quadratic Hamiltonian can also be derived for ADS, as well as a corresponding second-order Schrödinger equation. In this case, the Madelung reinterpretation of quantum mechanics provides a quantum Hamiltonian that does provide the quantum formulation for ADS, which provides new quantum variables interrelated dynamically with the classical variables. An application case is presented: the one-dimensional autonomous system given by the logistic dynamics. The differences between the classical and the quantum trajectories are highlighted in the context of this application case. Full article
(This article belongs to the Special Issue Mathematical Modelling in Relativity and Quantum Theory)
Show Figures

Figure 1

17 pages, 319 KiB  
Article
Complex Quantum Hydrodynamics in Momentum Space with Broken Time-Reversal Symmetry
by Dieter Schuch and Moise Bonilla-Licea
Symmetry 2023, 15(7), 1347; https://doi.org/10.3390/sym15071347 - 1 Jul 2023
Cited by 1 | Viewed by 1516
Abstract
Shortly after Schrödinger’s wave mechanics in terms of complex wave functions was published, Madelung formulated this theory in terms of two real hydrodynamic-like equations. This version is also the formal basis of Bohmian mechanics, albeit with a different ontological interpretation. A point of [...] Read more.
Shortly after Schrödinger’s wave mechanics in terms of complex wave functions was published, Madelung formulated this theory in terms of two real hydrodynamic-like equations. This version is also the formal basis of Bohmian mechanics, albeit with a different ontological interpretation. A point of criticism raised by Pauli against Bohmian mechanics is its missing symmetry between position and momentum that is present in classical phase space as well as in the quantum mechanical position and momentum representations. Both Madelung’s quantum hydrodynamics formulation and Bohmian mechanics are usually expressed only in position space. Recently, with the use of complex quantities, we were able to provide a hydrodynamic formulation also in momentum space. In this paper, we extend this formalism to include dissipative systems with broken time-reversal symmetry. In classical Hamiltonian mechanics and conventional quantum mechanics, closed systems with reversible time-evolution are usually considered. Extending the discussion to include open systems with dissipation, another form of symmetry is broken, that under time-reversal. There are different ways of describing such systems; for instance, Langevin and Fokker–Planck-type equations are commonly used in classical physics. We now investigate how these aspects can be incorporated into our complex hydrodynamic description and what modifications occur in the corresponding equations, not only in position, but particularly in momentum space. Full article
(This article belongs to the Special Issue Symmetry in Hamiltonian Dynamical Systems)
8 pages, 258 KiB  
Article
A Covariant Non-Local Model of Bohm’s Quantum Potential
by Roberto Mauri and Massimiliano Giona
Entropy 2023, 25(6), 915; https://doi.org/10.3390/e25060915 - 9 Jun 2023
Viewed by 1242
Abstract
Assuming that the energy of a gas depends non-locally on the logarithm of its mass density, the body force in the resulting equation of motion consists of the sum of density gradient terms. Truncating this series after the second term, Bohm’s quantum potential [...] Read more.
Assuming that the energy of a gas depends non-locally on the logarithm of its mass density, the body force in the resulting equation of motion consists of the sum of density gradient terms. Truncating this series after the second term, Bohm’s quantum potential and the Madelung equation are obtained, showing explicitly that some of the hypotheses that led to the formulation of quantum mechanics do admit a classical interpretation based on non-locality. Here, we generalize this approach imposing a finite speed of propagation of any perturbation, thus determining a covariant formulation of the Madelung equation. Full article
(This article belongs to the Special Issue Selected Featured Papers from Entropy Editorial Board Members)
19 pages, 339 KiB  
Article
Uncertainty Relations in the Madelung Picture Including a Dissipative Environment
by Dieter Schuch and Moise Bonilla-Licea
Entropy 2023, 25(2), 312; https://doi.org/10.3390/e25020312 - 8 Feb 2023
Cited by 2 | Viewed by 1593
Abstract
In a recent paper, we have shown how in Madelung’s hydrodynamic formulation of quantum mechanics, the uncertainties are related to the phase and amplitude of the complex wave function. Now we include a dissipative environment via a nonlinear modified Schrödinger equation. The effect [...] Read more.
In a recent paper, we have shown how in Madelung’s hydrodynamic formulation of quantum mechanics, the uncertainties are related to the phase and amplitude of the complex wave function. Now we include a dissipative environment via a nonlinear modified Schrödinger equation. The effect of the environment is described by a complex logarithmic nonlinearity that vanishes on average. Nevertheless, there are various changes in the dynamics of the uncertainties originating from the nonlinear term. Again, this is illustrated explicitly using generalized coherent states as examples. With particular focus on the quantum mechanical contribution to the energy and the uncertainty product, connections can be made with the thermodynamic properties of the environment. Full article
(This article belongs to the Special Issue Quantum Mechanics and Its Foundations III)
13 pages, 295 KiB  
Article
Diffusion Effect in Quantum Hydrodynamics
by Moise Bonilla-Licea, Dieter Schuch and Moises Bonilla Estrada
Axioms 2022, 11(10), 552; https://doi.org/10.3390/axioms11100552 - 13 Oct 2022
Cited by 2 | Viewed by 3360
Abstract
In this paper, we introduce (at least formally) a diffusion effect that is based on an axiom postulated by Werner Heisenberg in the early days of quantum mechanics. His statement was that—in quantum mechanics—kinematical quantities such as velocity must be treated as complex [...] Read more.
In this paper, we introduce (at least formally) a diffusion effect that is based on an axiom postulated by Werner Heisenberg in the early days of quantum mechanics. His statement was that—in quantum mechanics—kinematical quantities such as velocity must be treated as complex matrices. In the hydrodynamic formulation of quantum mechanics according to Madelung, the complex Schrödinger equation is rewritten in terms of two real equations—a continuity equation and a modified Hamilton–Jacobi equation. Considering seriously Heisenberg’s axiom, the velocity occurring in the continuity equation should be replaced by a complex one, thus introducing a diffusion term with an imaginary diffusion coefficient. Therefore, in quantum mechanics, there should be a diffusion effect showing up in the dynamics. This is the case in the time evolution of the free-motion wave packet under time reversal. The maximum returns to the initial position; however, the width of the wave packet does not shrink to its initial width. This effect is obvious but—as far as we know—it is not mentioned in any textbook. In our paper, we discuss this effect in detail and show the connection with a complex version of quantum hydrodynamics. Full article
(This article belongs to the Special Issue Advances in Quantum Theory and Quantum Computing)
14 pages, 350 KiB  
Article
Quantum Hydrodynamics of Spinning Particles in Electromagnetic and Torsion Fields
by Mariya Iv. Trukhanova and Yuri N. Obukhov
Universe 2021, 7(12), 498; https://doi.org/10.3390/universe7120498 - 15 Dec 2021
Cited by 2 | Viewed by 2912
Abstract
We develop a many-particle quantum-hydrodynamical model of fermion matter interacting with the external classical electromagnetic and gravitational/inertial and torsion fields. The consistent hydrodynamical formulation is constructed for the many-particle quantum system of Dirac fermions on the basis of the nonrelativistic Pauli-like equation obtained [...] Read more.
We develop a many-particle quantum-hydrodynamical model of fermion matter interacting with the external classical electromagnetic and gravitational/inertial and torsion fields. The consistent hydrodynamical formulation is constructed for the many-particle quantum system of Dirac fermions on the basis of the nonrelativistic Pauli-like equation obtained via the Foldy–Wouthuysen transformation. With the help of the Madelung decomposition approach, the explicit relations between the microscopic and macroscopic fluid variables are derived. The closed system of equations of quantum hydrodynamics encompasses the continuity equation, and the dynamical equations of the momentum balance and the spin density evolution. The possible experimental manifestations of the torsion in the dynamics of spin waves is discussed. Full article
(This article belongs to the Special Issue Torsion-Gravity and Spinors in Fundamental Theoretical Physics)
12 pages, 331 KiB  
Article
An Application of the Madelung Formalism for Dissipating and Decaying Systems
by Maedeh Mollai and Seyed Majid Saberi Fathi
Symmetry 2021, 13(5), 812; https://doi.org/10.3390/sym13050812 - 6 May 2021
Cited by 2 | Viewed by 2259
Abstract
This paper is concerned with the modeling and analysis of quantum dissipation and diffusion phenomena in the Schrödinger picture. We derive and investigate in detail the Schrödinger-type equations accounting for dissipation and diffusion effects. From a mathematical viewpoint, this equation allows one to [...] Read more.
This paper is concerned with the modeling and analysis of quantum dissipation and diffusion phenomena in the Schrödinger picture. We derive and investigate in detail the Schrödinger-type equations accounting for dissipation and diffusion effects. From a mathematical viewpoint, this equation allows one to achieve and analyze all aspects of the quantum dissipative systems, regarding the wave equation, Hamilton–Jacobi and continuity equations. This simplification requires the performance of “the Madelung decomposition” of “the wave function”, which is rigorously attained under the general Lagrangian justification for this modification of quantum mechanics. It is proved that most of the important equations of dissipative quantum physics, such as convection-diffusion, Fokker–Planck and quantum Boltzmann, have a common origin and can be unified in one equation. Full article
(This article belongs to the Special Issue Quantum Mechanics: Concepts, Symmetries, and Recent Developments)
Back to TopTop