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Abstract: In this paper, we introduce (at least formally) a diffusion effect that is based on an axiom
postulated by Werner Heisenberg in the early days of quantum mechanics. His statement was
that—in quantum mechanics—kinematical quantities such as velocity must be treated as complex
matrices. In the hydrodynamic formulation of quantum mechanics according to Madelung, the
complex Schrödinger equation is rewritten in terms of two real equations—a continuity equation
and a modified Hamilton–Jacobi equation. Considering seriously Heisenberg’s axiom, the velocity
occurring in the continuity equation should be replaced by a complex one, thus introducing a
diffusion term with an imaginary diffusion coefficient. Therefore, in quantum mechanics, there
should be a diffusion effect showing up in the dynamics. This is the case in the time evolution of the
free-motion wave packet under time reversal. The maximum returns to the initial position; however,
the width of the wave packet does not shrink to its initial width. This effect is obvious but—as far as
we know—it is not mentioned in any textbook. In our paper, we discuss this effect in detail and show
the connection with a complex version of quantum hydrodynamics.
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1. Introduction

A recent paper [1] discussed the formal similarities and differences between the
following diffusion (or heat) equation

∂

∂t
T(~r, t) = D∆T(~r, t) (1)

which describes the spatial and temporal change of a real distribution function T(~r, t) due
to a random process—where D is a real diffusion coefficient and ∆ is the Laplace-operator—
and the following time-dependent Schrödinger equation (particularly for the free motion,
i.e., potential, V = 0)

∂

∂t
ψ(~r, t) = i

h̄
2m

∆ψ(~r, t), (2)

which describes the same evolution of a complex state function ψ(~r, t) whose absolute
value squared, i.e., ρ(~r, t) = ψ ∗ψ, is a quantum mechanical probability distribution and i h̄

2m
(with i and the reduced Planck constant h̄ = h

2π ) now being a purely imaginary coefficient.
Despite the formal similarities, both equations describe very different processes.
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The solutions ψ(~r, t) of Equation (2) are also called wave functions because they behave
comparably to solutions of the following wave equation:

∂2

∂t2 u(~r, t) =
c2

n2 ∆u(~r, t) (3)

for a wave u(~r, t) that shows properties such as diffraction and dispersion, where n is the
diffraction index and c is the speed of light in a vacuum. In contrast with Equation (1), this
equation is invariant under time reversal as t appears quadratic on the lhs of (3).

So, although mathematically the Schrödinger equation has a structure similar to that
of (1)—i.e., a parabolic differential equation—its solutions behave similarly to those of (3):
a hyperbolic differential equation with a second derivative in time. The difference between
Equations (1) and (2) is that ψ(~r, t) is in general a complex function and the imaginary
unit i appears explicitly in Equation (2). (These fundamental differences and their math-
ematical and physical consequences were already pointed out explicitly by Schrödinger
himself in [2]—see also [3] for an English translation and comments.) However, this is an
important—if not the most important—difference between classical and quantum physics,
as stressed by C. N. Yang in their lecture on the occasion of Schrödinger’s 100th anniversary
(see [4]), since “complex numbers become a conceptual element of the very foundations of
physics”. This is reflected by the fact that i occurs explicitly in the fundamental equations
of quantum mechanics not only in Schrödinger’s Equation (2), but also in Heisenberg’s
commutation relation pq− qp = −ih̄ in their matrix mechanics (with q = position and
p = momentum operators).

There are attempts in the literature to turn a complex space into a real space with twice
as many dimensions, arguing that complex numbers are just a convenient mathematical
tool, but not essential for the quantum mechanical description of nature. However, this is
not true, as real and imaginary parts, or amplitude and phase of the complex wave function,
are not independent of each other, but are uniquely coupled. This can be seen clearly in the
hydrodynamic formulation (see Section 2) where the continuity Equation (6) for the density,
ρ, and thus for the amplitude,

√
ρ, contains the phase of the wave function via ~υM = 1

m∇S;
additionally, this is shown in Equation (8) where the phase, S, contains the amplitude via
Vqu. This is not taken into account by doubling the number of degrees of freedom. The
viewpoint that complex quantities are essential for quantum mechanics has also recently
been confirmed experimentally (see, e.g., [5,6]).

Even though Heisenberg and Schrödinger arrived from different starting points,
they share the same guideline: the relation between classical and quantum mechanics
should be mediated via the mean value which is the principle of correspondence [7] and
mathematically expressed by the so-called Ehrenfest theorem [8]. As Heisenberg pointed
out, the difference lies in the treatment of kinematic quantities, such as position and velocity,
while Heisenberg associates them with time-dependent complex matrices; for Schrödinger,
the time-dependence was contained in the complex wave function. However, in the
beginning, Schrödinger did not consider the imaginary unit in their first communication [9]
where, in the definition of their wave function via the action S according to S = K ln ψ, the
constant K is chosen to be K = h̄ and the wave function itself is assumed to be real. It was
after some correspondence with Lorentz (see, e.g., [10]), he had to admit that their wave
function is complex. So, in [11]—published a few months later—he uses a complex form for
the wave function in Equation (2), and below Equation (4) he explicitly uses . . . “komplexe
Wellenfunktion Ψ”.

The importance of i in quantum mechanics and Schrödinger’s struggle with complex
quantities in wave mechanics has also been discussed recently in the literature [12–14]. It
is not only the wave function, but also the operators—essential to Schrödinger’s wave
mechanical form of quantum mechanics—which can be complex or imaginary, such as the
momentum operator in position representation, P̂ = h̄

i∇ (with ∇ = Nabla operator).
What about the time reversal invariance of the Schrödinger Equation (2)? As pointed

out, even recently in several articles on this subject [15–19], a simple replacement of t by
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−t would change the form of (2) as in the case of the diffusion equation. Time reversal in
classical physics also means that velocity or momentum change sign (magnetic fields are
not included in our discussion), but the time, t, does not occur explicitly in the quantum
mechanical operator, P̂; however, a change of sign can be achieved by taking the conjugate
complex of this operator. This is sometimes used as an explanation for the so-called Wigner
time-reversal invariance. (A more precise formulation requires the time inversion operator
to be anti-linear. Wigner actually used more appropriately the terminology “reversal of
motion” instead of “time reversal” [20].) In other words, in quantum mechanics, it is
not only t that has to be changed to −t, but the conjugate complex also has to be taken;
meaning ψ(~r, t) → ψ∗(~r,−t) and i h̄

2m → −i h̄
2m . In this case, the form of Equation (2)

remains invariant under this transformation.
However, considering the latter condition for the time reversal, it is actually only the

phase of the complex wave function—when written in polar form as ψ(~r, t) =
√

ρ(~r, t) exp[ i
h̄ S(~r, t)

]
—that is affected by this transformation, not the amplitude,

√
ρ, providing that t

occurs in ρ in an even power. Does this mean that the time-dependent Schrödinger equation
contains an element of broken time-reversal invariance as the (real) diffusion equation
does? If so, how can this formally be seen in the equations?

To answer these questions, we consider the Gaussian wave packet solution of Equation (2)
(in one dimension), where the probability density, ρ(x, t), also Gaussian, can be written in the
following form:

ρ(x, t) =
1√

2πσ2
x(t)

exp
[
− (x− 〈x〉)2

2σ2
x(t)

]
(4)

where 〈x〉 is the mean value of position and σx(t) =
√
〈x2〉 − 〈x〉2 describes the posi-

tion uncertainty and, in this case, the width of the Gaussian function. It is well known
that a Gaussian function is completely determined by its maximum—here 〈x〉 (position
mean value)—and its width—here σx—where, in our case, both parameters can be time-
dependent. In the case of the free motion, V = 0, the width is spreading quadratically in
time according to

σ2
x(t) = σ2

0

[
1 +

( h̄t
2mσ2

0

)2]
. (5)

Let us consider an initial wave packet with its maximum at 〈x〉(t = 0) = 〈x〉0 that
follows the classical trajectory, moving with the (constant) velocity 〈υ〉 = 1

m 〈p〉 =
1
m p0 = υ0

and having the initial width σx(t = 0) = σ0. After a time interval, τ, the maximum has
reached the following position: 〈x〉(τ) = υ0τ. Now, applying time reversal, the maximum
fulfills that which Lohschmidt described in their argument against Boltzmann’sH-function,
i.e., the system will go (in configuration space) though the same states as before, only in
reverse order. So, after another time interval, τ, the maximum of the Gaussian will reach
the following initial position: 〈x〉(2τ) = 〈x〉0.

However, what happens to the width? Starting the time-reversed evolution with the

width, σx(τ) = σ0

√
1 +

(
h̄τ

2mσ2
0

)2
= στ , the Gaussian wave packet will continue spreading

according to
(
−h̄t

2mσ2
0

)2
=
(

h̄t
2mσ2

0

)2
and will arrive after a second period, τ, with an even

broader width, σx(2τ) = στ

√
1 +

(
h̄τ

2mσ2
0

)2
6= σ0 at the initial position—i.e., the wave

packet will not shrink to its initial width. (It should be pointed out that this continuation
of the spreading is not connected with any perturbance due to the interaction with an
environment that might be assumed to take place in order to reverse the motion. The time
reversal is purely a “Gedankenexperiment”, where no interaction with any environment is
taken into account, only the Schrödinger equation for an isolated system is considered.) σ0!

Obviously, the amplitude of the wave function, and thus the density, ρ(x, t), behaves
differently from the phase of the wave function that is affected by the time reversal, similar
to velocity in classical physics. Can this different behavior also somehow be expressed in
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the corresponding equations of motion for amplitude and phase—bearing in mind that
Heisenberg’s kinematic quantities, in particular velocity, are to be considered complex?

For this purpose, we apply Madelung’s hydrodynamic formulation of quantum me-
chanics [21] that allows us to separate the time-dependent Schrödinger equation into
two (coupled) equations: one continuity equation for the amplitude and a modified
Hamilton–Jacobi equation for the phase. This corresponds to an Euler-type equation
for a velocity field. However, the continuity equation does not contain any irreversible dif-
fusion current. In the following, this problem is solved by introducing complex kinematic
quantities, inspired by Heisenberg’s original idea. This naturally causes the appearance of
a diffusive current in the continuity equation with an already known diffusion coefficient.
The reason that the diffusive current is absent in the Madelung approach is that it cancels
with the imaginary part of the now-complex velocity field.

The paper is organized as follows: In Section 2, a short overview of the current
hydrodynamic formulation of quantum mechanics is presented and the inconsistencies
related to the diffusion process are specified. To solve this problem, in Section 3.1, a
complex notation of kinematic quantities is introduced and applied in Section 3.2 to obtain
the missing diffusion term in the continuity equation. Using the Gaussian wave packet
solutions of the time-dependent Schrödinger equation as example, in Section 3.3, the
relation between the real and imaginary parts of the introduced complex velocity field and
phase and amplitude of the wave function is demonstrated. Section 3.4 shows that the
introduction of the complex velocity field does not change the form of the Euler equation
for the phase of the wave packet, in agreement with the correct evolution of the wave
packet maximum. Finally, in Section 4, the results are summarized and our conclusions
are drawn.

2. Conventional Quantum Hydrodynamics

Shortly after Schrödinger published their papers on wave mechanics, Madelung
showed [21] that the complex Schrödinger equation is equivalent to a set of two real
hydrodynamic equations.

A continuity equation for the density, ρ, has the following form:

∂

∂t
ρ +∇

(
ρ~υM

)
= 0 (6)

where ~υM denotes a velocity field related with the action S in the phase of the wave
function via

~υM =
1
m
∇S. (7)

The second hydrodynamic equation is obtained from the following evolution of
the phase:

∂

∂t
S +

1
2m
(
∇S
)2

+ V + Vqu = 0, (8)

that is a modified Hamilton–Jacobi Equation. (Note that the real Equations (6) and (8) are
invariant under time reversal, if t is replaced by−t and S, by−S, leading to−~υM using (7).)
Taking its gradient yields

ρ
( ∂

∂t
+~υM · ∇

)
~υM = −ρ

1
m
∇
(

V + Vqu

)
, (9)

showing formal similarity with the Euler equation

ρ
( ∂

∂t
+~υ · ∇

)
~υ = −ρ~f −∇P, (10)
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with ~f being the force density per mass and P the thermodynamic pressure. Comparison
suggests the connection between the so-called “quantum potential” Vqu = − h̄2

2m2
∆
√

ρ√
ρ and

the pressure P via

∇P = ρ
1
m
∇Vqu =

ρ

m
∇
(
− h̄2

2m
∆
√

ρ
√

ρ

)
. (11)

As Takabayasi points out in [22], there should be a stress tensor rather than a pressure
term, what makes sense in particular for ∇ ·~υ 6= 0 (such as for a spreading wave packet
in quantum mechanics), as in this case these two quantities are not identical. However,
in our quantum mechanical case, a proper explanation of Vqu in terms of the complex
quantities—introduced in the next Section—will be given.

Madelung’s formulation of wave mechanics was also later independently used by
David Bohm in their deterministically inspired version of quantum mechanics [23,24]
where he claimed the existence of real paths of (quantum) particles that can be obtained by
integration of Equation (7). As we have shown recently [25], this deterministic viewpoint
is incorrect and has to be replaced by a probabilistic one that differs from the usual prob-
abilistic viewpoint taken in quantum mechanics. Nevertheless, Bohmian mechanics can
still be helpful in the treatment of quantum systems, e.g., tunneling problems, particularly
when performing numerical simulations [26,27].

Looking at Madelung’s fluid as a classical one, it can be associated with an irrotational,
inviscid and compressible one with no obvious quantum effects at first sight. One may
argue that these effects are embedded in the term related to the “quantum potential”, Vqu.
However, apart from this rather misleading terminology (Vqu actually originates from
the kinetic energy operator, as will be shown below, and is not a potential at all), the
corresponding term has still a more classical meaning, only indicating that the fluid is
compressible, since Vqu depends on the density. As mentioned above, there is the well-
known diffusive effect of the wave packet spreading; however, there is no diffusive current
in the continuity Equation (6), only a convective one.

On the other hand, from a fundamental point of view, it should be expected that
the (kinetic) quantities in a hydrodynamic formulation of quantum mechanics would be
of a complex nature, unlike the classical counterpart. As Heisenberg [28] wrote in their
pioneering paper of 1925:

“ The Einstein–Bohr frequency condition (which is valid in all cases) already presents
such a complete departure from classical mechanics, or rather (using the viewpoint of
wave theory) from the kinematics underlying this mechanics, that even for the simplest
quantum theoretical problems the velocity of classical mechanics simply cannot be main-
tained.”

This was a milestone for future quantization methods—i.e., mappings onto classical-
like equations: only kinematic quantities should be of a different nature than their classical
counterparts. From this viewpoint, the mapping of a quantum system onto hydrodynamical
equations should be of the following form:

∂

∂t
ρ +∇ ·~j = 0 (12)

ρ
( ∂

∂t
+~υ · ∇

)
~υ = −ρ

1
m
∇V −∇P, (13)

where the flow, ~υ, and the density current,~j, should be of a complex nature, since their
origin is kinematic, whilst ρ, not being of a kinematic quantity, must remain a positive
real quantity.

It is important to emphasize that we are not claiming that the hydrodynamical
Equations (6) and (9) are inaccurate, but rather that they are only one perspective of the
quantization principle. Therefore, the explanation of the diffusive effects of wave packets is
unanswered within the current hydrodynamic formulation due to the absence of a diffusive
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current in the continuity equation. We will now show how this can be taken into account in
a complex formulation.

3. Complex Hydrodynamical Formulation
3.1. Notation

Characteristic of Madelung’s approach is the splitting of the complex Schrödinger
equation into two real equations for the amplitude and the phase of the complex wave
function (which are coupled due to the appearance of i in the Schrödinger equation, see
also [29]). However, as mentioned in Section 2, the fundamental kinematic quantities
such as velocity should—according to Heisenberg—be of a complex nature in quantum
mechanics. Let us therefore consider such a complex formulation in position representation
(as also used in [29]), defined via the complex wave function, 〈~r|ψ(t)〉 = ψ(~r, t), and the
quantum mechanical operators, e.g., 〈~r|P̂|ψ(t)〉 = h̄

i∇ψ(~r, t), according to

~υ(~r, t) .
=
〈~r| 1

m P̂|ψ(t)〉
〈~r|ψ(t)〉 (14)

T(~r, t) .
=
〈~r| 1

2m P̂2|ψ(t)〉
〈~r|ψ(t)〉 (15)

H(~r, t) .
=
〈~r|Ĥ|ψ(t)〉
〈~r|ψ(t)〉 , (16)

where the conventional Dirac notation has been used.
With the polar ansatz, ψ(~r, t) =

√
ρ(~r, t) exp

[ i
h̄ S(~r, t)

]
, these quantities can be ex-

pressed as

~υ(~r, t) =
∇S
m
− i

h̄
2m
∇ρ

ρ
= ~υR(~r, t) + i~υI(~r, t) (17)

T(~r, t) =
1

2m
~υ2 − i

h̄
2
∇ ·~υ (18)

H(~r, t) = −∂S
∂t

+ i
h̄
2

∂ρ
∂t
ρ

(19)

where, in the last relation, the Hamiltonian has been taken equal to the energy operator
Hop = Eop = ih̄∂/∂t.

Considering the complex velocity (17), it is obvious that the real part is identical with
Madelung’s velocity field, ~υR

.
= ~υM. The imaginary part, ~υI , is that which—in [1]—Mita

calls dispersive velocity. (The real part of (17), ~υR, corresponds to Mita’s current velocity.
In [1], he essentially discusses the equation of motion of this velocity, their Equation (39), that
corresponds to our Equation (41), derived from the modified Hamilton–Jacobi Equation (8), in
Mita’s case (26), by taking its gradient. The subject of our present paper is the other of the two
hydrodynamic equations, the continuity equation and the possibility to manifest a diffusion
effect in this equation.) Through inserting the complex velocity (17) into the expression for the
complex kinetic energy (18), it becomes obvious that the real part of this quantity does not only
contain the contribution, 1

2m
(
∇S
)2

= m
2 υ2

R, that appears in the modified Hamilton–Jacobi
Equation (8), but a contribution from~υI also occurs:

−
[m

2
υ2

I −
h̄
2
∇ ·~υI

]
= − h̄2

8m

(∇ρ

ρ

)2
− h̄2

4m
∇
(∇ρ

ρ

)
= − h̄2

2m
∆
√

ρ
√

ρ
= Vqu, (20)

that shows that the “quantum potential” is not really a potential, but entirely depends on
the imaginary part of our complex velocity (17).

At this point, a few remarks seem necessary, to avoid confusion with complexified
trajectories derived from complex velocity or momentum fields as they appear in various
forms of complex Bohmian mechanics [30–40] (for a more detailed review and further
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references, see also [26]). Most of these approaches write the wave function in terms of a
complex action function, which actually goes back to Schrödinger’s original definition [9].
From there, a complex momentum (or velocity) field arises. To date, there is formal
similarity with our approach.

However, in the abovementioned approaches, in view of the fact that the velocity is
complex, it is incorrectly concluded that the (independent) position variable must also be
complex. Various attempts have been made to accomplish this. Either by integrating the
complex velocity (in position space), or by replacing the independent position variable by
a complex one in the Schrödinger equation, leading to a different physical situation than
that described by the original Schrödinger equation—which is already complex due to the
complexity of the wave function, ψ.

3.2. Continuity Equation

The notation introduced in Section 3.1 shows directly how to solve the problem of the
missing diffusion term in the continuity Equation (6). Following the logic of quantization
advocated by Heisenberg, the kinematic quantity velocity in the current ρ~υM should be
replaced by ρ~υ using the complex velocity as defined in (17). This replacement introduces
an additional term proportional to the imaginary part, i~υI , that is not present in Madelung’s
continuity Equation (6). In order to regain this (real) form of the continuity equation
that is usually applied in quantum mechanics, one has to (formally) compensate the
contribution of i~υI . This can be carried out by adding a diffusion current, −D∇ρ, with
the imaginary diffusion coefficient, D = −ih̄/2m, leading to an equation that has the
form of an irreversible Fokker–Planck-type equation, in a position space of a so-called
Smoluchowski equation:

∂

∂t
ρ +∇ ·

(
ρ~υ− D∇ρ

)
=

∂

∂t
ρ +∇

(
ρ~υ
)
− D∆ρ = 0 (21)

with a complex convection current, ρ~υ, and an imaginary diffusion current,−D∇ρ . In other
words, comparing Equation (21) with Equations (12) and (6) shows that the conventional
continuity Equation (6) can be regained from the complex Equation (12) that takes into
account Heisenberg’s request, if the imaginary contribution in~j = ρ~υ is eliminated by an
imaginary term that has the form of a diffusion current.

Again, to avoid confusion, a few remarks concerning Equations (17) and (21) are
necessary. There are equations formally looking similar to (21) in a quantum mechanical
context in the literature, most familiar probably from Nelson’s stochastic mechanics [41] or
a more recent review article by Bohm and Hiley [42] and several others that can be traced
back to a paper by Fürth [43]—who tried to establish a formal connection between the
Schrödinger and the diffusion equation. Unlike in Fürth’s paper—where it is explicitly
stressed that a corresponding diffusion coefficient in Schrödinger’s case has to be imaginary
(a fact that has correctly been taken into account by Fényes [44], even quoting passages of
Schrödinger’s original comment, mentioned in the first parenthesis of page 2)—in the work
of Nelson, Bohm, Hiley, and others, only real diffusion currents/velocities with the real
diffusion coefficient D = h̄/2m are taken into account; this is essentially different from our
approach, with an entirely imaginary diffusion current/velocity.

Equation (21) shows that, in quantum mechanics, there is an inherently diffusive effect
involved which becomes apparent in the spreading behavior of the wave packet. This
is, however, not obvious in the usual description in terms of a real continuity equation
as the diffusion current is compensated by the imaginary part of the convection current,
iρ~υI = −i(h̄/2m)∇ρ.

One could argue that this reasoning is just rhetoric or semantics. After all, the imag-
inary part of υ does not contribute to the mean value of υ given that its mean value for
square integrable functions, ψ(~r, t), always vanishes as these functions go to zero for
~r −→ ±∞. Therefore, ~υI does not contribute to the equation of motion for the mean values
that, according to Ehrenfest [8], should obey the corresponding classical equation.
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However, as in the classical Langevin theory of Brownian motion where the fluctuating
stochastic force vanishes on average, the square of this force still makes a physically
significant contribution to the energy of the Brownian particle. Therefore, we will make
an excursion to consider quantities where the square of υI (or its derivative) is of physical
significance. One such situation can be found in the momentum uncertainty σ2

p and the
corresponding uncertainty product that must fulfil Heisenberg’s requirement.

The momentum uncertainty σ2
p ,

σ2
p = 〈ψ(t)|P̂2|ψ(t)〉 − 〈ψ(t)|P̂|ψ(t)〉2 (22)

can be written in terms of our complex velocity (in one dimension) as

σ2
p =

∫
ρ
(

m2υ2 − ih̄m
∂υ

∂x

)
dx−

[ ∫
ρ
(
mυ
)
dx
]2

(23)

leading to

σ2
p =

∫
ρ
(

m2υ2
R −m2υ2

I + h̄m
∂υI
∂x

)
dx−

[ ∫
ρ
(
mυR

)
dx
]2

(24)

because the imaginary parts of the integrals vanish (as discussed in detail in [45]).
This expression can be divided into two contributions—one σ2

p,ph depending only on

the phase of ψ via υR, the other σ2
p,am depending just on the amplitude via υI , as follows:

σ2
p = m2(〈υ2

R〉 − 〈υR〉2
)
−m2(〈υ2

I 〉 −
h̄
m
〈 ∂

∂x
υI〉
)

= σ2
p,ph + σ2

p,am (25)

where the integrations are indicated by the pointed brackets. So, the second contribution,
σ2

p,am, depends entirely on the imaginary part of υ and thus on the diffusion current in (21),
which can actually also be connected to the quantum potential in the Euler Equation
(see below).

This contribution, σ2
p,am, is also the one providing the minimum uncertainty in Heisen-

berg’s relation that does not vanish even if, e.g., the wave packet does not spread. To
demonstrate this, we consider the example of a Gaussian wave packet solution of the
time-dependent Schrödinger equation.

3.3. Example

As can be found in detail, e.g., in [46], a Gaussian wave packet solution of the time-
dependent Schrödinger equation can be written (in one dimension) as

ψ(x, t) = N(t) exp

[
− (x− 〈x〉)2

4σ2
x

+
i
h̄

(m
4

d
dt σ2

x

σ2
x

(x− 〈x〉)2 + 〈p〉(x− 〈x〉) + K(t)
)]

, (26)

where the normalization coefficients N(t) and K(t) are purely time-dependent functions
and not relevant to the following: 〈p〉 = m d

dt 〈x〉 is the classical momentum.
From the corresponding probability density

ρ(x, t) =
1√

2πσ2
x(t)

exp
[
− x̃2

2σ2
x(t)

]
(27)

with x̃ = x− 〈x〉 and σ2
x = 〈x2〉 − 〈x〉2 = 〈x̃2〉 follows with

υI = −
h̄

2m

∂
∂x ρ

ρ
=

h̄
2m

x̃
σ2

x
(28)
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that

(σp,am)
2 = −m2(〈υ2

I 〉 −
h̄
m
〈 ∂

∂x
υI〉
)
=

h̄2

4
1
σ2

x
. (29)

(The difference between υR and the classical velocity 〈υ〉 = 〈p〉/m is the term depend-
ing on σx(x, t), essentially the position uncertainty, particularly on its time-dependence.
It only vanishes in the very particular case of constant σx. Since the term is a logarithmic
time-derivative, it does not depend on any constant entering σx, particularly not on h̄.
Therefore, this term remains also in a limit h̄ −→ 0.) From

υR =
1
m

∂

∂x
S =

1
2

d
dt σ2

x

σ2
x

x̃ +
〈p〉
m

, (30)

it follows that

(σp,ph)
2 = m2(〈υ2

R〉 − 〈υR〉2
)
=

m2

4

(
d
dt σ2

x

σ2
x

)2

σ2
x =

h̄2

4

(m
h̄

d
dt

σ2
x

)2 1
σ2

x
. (31)

Therefore, the uncertainty product can be written as

σ2
pσ2

x =
(
σ2

p,am + σ2
p,ph
)
σ2

x =
h̄2

4
+

h̄2

4

(m
h̄

d
dt

σ2
x

)2
, (32)

i.e., the minimum contribution that also exists for wave packets with a constant width, i.e.,
for d

dt σ2
x = 0, (

σ2
pσ2

x
)

min =
h̄2

4
= σ2

p,amσ2
x = m2|D|2 (33)

depends only on the contribution from the amplitude and thus from the imaginary part of
the velocity, υI , and can be expressed by the absolute value of the diffusion coefficient in υI .

As the minimum uncertainty, h̄2/4, is related to the commutation relation of position
and momentum—whereas the additional contribution is related to the anti-commutator
of these quantities, taking into account their correlation—the following question might
come up: are our results valuable for research on the generalized uncertainty principle, as
it is discussed in quantum cosmology, where a modification of the commutation relation
due to a minimal (Planck) length is considered? In light of the results, such modifications
would be essentially connected with the amplitude of the wave function, but more detailed
comments need further investigation.

3.4. Euler Equation

The complexified Euler equation corresponding to the Madelung Equation (9) can be
obtained easily from Equations (13) and (15)—taking into account that derivatives with
respect to position and time commute—leading to

m
∂~υ

∂t
= −∇H. (34)

For a system with a Hamiltonian operator given by Ĥ = (1/2m)P̂2 + V, it is straight-
forward to compute

m
∂~υ

∂t
= −∇

(m
2
~υ2 − i

h̄
2
∇ ·~υ

)
−∇V, (35)

leading—for a velocity field, ~υ, that is irrotational, as in our case—to

m
∂~υ

∂t
= −m

(
~υ · ∇

)
~υ + i

h̄
2
∇
(
∇ ·~υ

)
−∇V (36)
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or
ρ
( ∂

∂t
+~υ · ∇

)
~υ = − ρ

m
∇
(
V + Vqu

)
(37)

with

ρ~υ =
1
m

ρ∇S + D∇ρ (38)

∇P = ρ∇
(

D∇ ·~υ
)
, (39)

where D = −i(h̄/2m).
The form of the complexified Euler Equation (37) corresponds to that of the Madelung

Equation (9), i.e., unlike in the case of the continuity equation, no additional terms—such
as the diffusion term—occur in this equation. It simply reflects the quantization process,
confirming the complex nature of kinematic quantities such as the velocity field, as indicated
by Heisenberg.

Splitting Equation (37) into real and imaginary parts, yields the real part.

ρ
( ∂

∂t
~υR +~υR · ∇~υR

)
= − ρ

m
∇V + ρ~υI · ∇~υI −

ρ

m
∇
( h̄

2
∇ ·~υI

)
(40)

that can be written, using Vqu = −m
2~υ

2
I +

h̄
2∇ ·~υI = − h̄2

2m
∆
√

ρ√
ρ , as

ρ
( ∂

∂t
~υR +~υR · ∇~υR

)
=

ρ

m
[
−∇V −∇Vqu

]
(41)

which is identical to Madelung’s Equation (9) if υM is replaced by ~υR.
It can be shown straightforwardly that the imaginary part of Equation (37) vanishes if

the continuity equation is fulfilled (for details, see also [29]).
It should also be mentioned that, as in the conventional case, the fluid remains irrota-

tional, inviscid, and compressible.

4. Conclusions

In classical mechanics, time reversal means the following replacements: t −→ −t,
υ −→ −υ or p −→ −p. According to Loschmidt’s arguments, if a system reaches a certain
position in configuration space after a certain period of time, this system will return to its
initial position after the same period of time if time reversal is applied according to the
abovementioned rules.

Concerning quantum mechanics, the situation is different as time does not appear explicitly
in the operator for momentum or velocity, rather it appears as the imaginary unit i. This is related
to a major difference between classical and quantum mechanics. According to Wigner [20], one
should not talk about “time reversal” in quantum mechanics but about “motion reversal”. The
latter, however, is not simply the replacement of t by −t, but also involves the application of
complex conjugation. This, in turn, affects not just the operators that can contain the imaginary
unit, i, but also the complex wave function in the Schrödinger equation. Writing this wave
function in polar form, ψ(x, t) =

√
ρ(x, t) exp

[ i
h̄ S(x, t)

]
—consistent with Madelung—shows

that complex conjugation only affects the phase of the wave function, not its amplitude,
√

ρ.
Looking at the time evolution of the wave packet solution of the time-dependent

Schrödinger equation, specifically for free motion, V = 0, it is obvious that motion reversal
in the abovementioned way does not revert to the initial state after a second period of time
evolution. In agreement with the classical trajectory, the maximum of the wave packet
reaches its initial position after motion reversal. However, the width does not shrink to its
initial one but becomes much broader due to continuing dispersion—such as a diffusion
effect—also in the time-reversed segment of the evolution. This irreversible effect should
somehow also be manifested in the equation of motion for density, ρ(x, t).

According to Madelung [21], the complex Schrödinger equation can be rewritten as
two (coupled) real equations; one for the phase, the other for the amplitude of the wave
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function. Using the classical definition of time reversal as mentioned above, both equations
seem invariant under this operation. However, the typical quantum mechanical aspect of
complex quantities is eliminated in this formulation.

Following Heisenberg, in the quantum theory kinematic quantities, such as velocity,
should be replaced by complex ones. Proceeding accordingly in Madelung’s (continuity)
equation for the density, replacing the real velocity, ~υM, with the complex, ~υ—as defined
in (14)—this equation can only be fulfilled if a diffusion term (with imaginary diffusion
coefficient) is added to compensate for the contribution from the imaginary part, ~υI , of the
complex velocity, leading to a Smoluchowski-type equation. This additional diffusion term
expresses, at least formally, the spreading behavior of the wave packet.

In Madelung’s second equation for the phase, the replacement of ~υM by complex ~υ
does not change the form of the corresponding Euler equation; this demonstrates that the
Wigner “time reversal” also affects the phase of the wave function and therefore leads
to a consistent treatment. This is supported by the fact that the maximum of the wave
packet—related to the mean value of position following the classical trajectory—returns
to its initial position after time inversion and complex conjugation. Complex conjugation
of the phase changes the sign of the classical velocity (or momentum) that appears in the
phase, thus having the same effect as time reversal in the classical case.

In conclusion, the irreversible behavior of the quantum mechanical wave packet
observed under motion reversal formally becomes obvious only if the complex kinematic
quantities are applied.

In this sense, Equations (21) and (37) constitute the correct mapping from a quantum
system onto a hydrodynamic formulation showing the effects involved more clearly. That
does not mean that Madelung’s Equations (6) and (9) are incorrect but rather that they
display only one aspect of the quantization principle.

Though the mean value of the imaginary part of the complex velocity vanishes, it
does not that mean ~υI has no further influence on the quantum system. This becomes
obvious when considering the uncertainty product of position and momentum. As has
been show in (32), using (29), the minimum uncertainty (h̄2/4) depends entirely on ~υI
and its derivative and can be expressed via the absolute value of the (imaginary) diffusion
coefficient as (h̄2/4) = m2|D|2.

There are certainly other currents related to quantum mechanics that could be consid-
ered from the viewpoint of our approach, but this shall not be the subject of this work.

In this paper, only non-relativistic quantum mechanics and the corresponding currents
are considered. Interesting questions might be the following: could the asymmetry in the
spreading behavior be related to the absence of Lorentz symmetry? Could a relativistic
formulation could resolve this problem? This would require the consideration of Dirac
currents and, maybe, a transition from complex numbers to quaternions; this is quite
beyond the scope of this work, but might be an interesting target for future investigations.
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27. Sanz, Ṡ.; Miret-Artés, S. Setting up tunneling conditions by means of Bohmian mechanics. J. Phys. A Math. Theor. 2011, 44, 485301.

[CrossRef]
28. Heisenberg, W. Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen. Z. Phys. 1925, 33, 879.

[CrossRef]
29. Bonilla-Licea, M.; Schuch, D. Quantum hydrodynamics with complex quantities. Phys. Lett. A 2021, 392, 127171. [CrossRef]
30. John, M.V. Modified de Broglie–Bohm Approach to Quantum Mechanics. Found. Phys. Lett. 2002, 15, 329. [CrossRef]
31. John, M.V. Probability and complex quantum trajectories. Ann. Phys. 2009, 324, 220. [CrossRef]
32. Dey, S.; Fring, A. Bohmian quantum trajectories from coherent states. Phys. Rev. A 2013, 88, 022116. [CrossRef]
33. Young, C.-D. Trajectory interpretation of the uncertainty principle in 1D systems using complex Bohmian mechanics. Phys. Lett.

A 2008, 372, 6240. [CrossRef]
34. Chou, C.-C.; Wyatt, R.E. Considerations on the probability density in complex space. Phys. Rev. A 2008, 78, 044101. [CrossRef]
35. Chou, C.-C.; Wyatt, R.E. Complex-extended Bohmian mechanics. J. Che. Phys. 2010, 132, 134102. [CrossRef]
36. Poirier, B. Flux continuity and probability conservation in complexified Bohmian mechanics. Phys. Rev. A 2008, 77, 022114.

[CrossRef]
37. Goldfarb, Y.; Degani, J.; Tannor, D.J. Bohmian mechanics with complex action: A new trajectory-based formulation of quantum

mechanics. J. Chem. Phys. 2006, 125, 231103. [CrossRef]
38. Sanz, Á.S.; Miret-Artés, S. Comment on “Bohmian mechanics with complex action: A new trajectory-based formulation of

quantum mechanics”. J. Chem. Phys. 2007, 127, 197101. [CrossRef]
39. Goldfarb, Y.; Tannor, D.J. Interference in Bohmian mechanics with complex action. J. Chem. Phys. 2007, 127, 161101. [CrossRef]

http://doi.org/10.1119/10.0002765
http://dx.doi.org/10.1140/epjh/s13129-021-00032-7
http://dx.doi.org/10.1038/s41586-021-04160-4
http://dx.doi.org/10.1103/PhysRevLett.128.040402
http://www.ncbi.nlm.nih.gov/pubmed/35148126
http://dx.doi.org/10.1111/j.1746-8361.1948.tb00703.x
http://dx.doi.org/10.1007/BF01329203
http://dx.doi.org/10.1002/andp.19263840404
http://dx.doi.org/10.1002/andp.19263861802
http://dx.doi.org/10.1119/1.17060
http://dx.doi.org/10.1119/10.0000258
http://dx.doi.org/10.1119/10.0000852
http://dx.doi.org/10.1086/392602
http://dx.doi.org/10.1111/j.0066-7372.2003.00015.x
http://dx.doi.org/10.1086/690721
http://dx.doi.org/10.1007/BF01400372
http://dx.doi.org/10.1143/ptp/8.2.143
http://dx.doi.org/10.1103/PhysRev.85.166
http://dx.doi.org/10.1103/PhysRev.85.180
http://dx.doi.org/10.1007/s10701-021-00525-x
http://dx.doi.org/10.1140/epjd/e2014-50222-4
http://dx.doi.org/10.1088/1751-8113/44/48/485301
http://dx.doi.org/10.1007/BF01328377
http://dx.doi.org/10.1016/j.physleta.2021.127171
http://dx.doi.org/10.1023/A:1021212410819
http://dx.doi.org/10.1016/j.aop.2008.09.007
http://dx.doi.org/10.1103/PhysRevA.88.022116
http://dx.doi.org/10.1016/j.physleta.2008.08.050
http://dx.doi.org/10.1103/PhysRevA.78.044101
http://dx.doi.org/10.1063/1.3364870
http://dx.doi.org/10.1103/PhysRevA.77.022114
http://dx.doi.org/10.1063/1.2400851
http://dx.doi.org/10.1063/1.2798761
http://dx.doi.org/10.1063/1.2794029


Axioms 2022, 11, 552 13 of 13

40. Sanz, Á.S.; Borondo, F.; Miret-Artés, S. Particle diffraction studied using quantum trajectories. J. Phys. Condens. Matter 2002,
14, 6109. [CrossRef]

41. Nelson, E. Derivation of the Schrödinger Equation from Newtonian Mechanics. Phys. Rev. 1966, 150, 1079. [CrossRef]
42. Bohm, D.; Hiley, B.J. Non-locality and Locality in the Stochastic Interpretation of Quantum Mechanics. Phys. Rep. 1989, 172,

93–122. [CrossRef]
43. Fürth, R. Über einige Beziehungen zwischen klassischer Statistik und Quantenmechanik. Z. Phys. 1933, 81, 143. [CrossRef]
44. Fényes, I. Eine wahrscheinlichkeitstheoretische Begründung und Interpretation der Quantenmechanik. Z. Phys. 1952, 132, 81–106.

[CrossRef]
45. Bonilla-Licea, M.; Schuch, D. Bohmian mechanics in momentum representation and beyond. Phys. Lett. A 2020, 384, 126671.

[CrossRef]
46. Schuch, D. Quantum Theory from a Nonlinear Perspective; Riccati Equations in Fundamental Physics. Fundamental Theories of

Physics; Springer International: New York, NY, USA, 2018; Volume 191.

http://dx.doi.org/10.1088/0953-8984/14/24/312
http://dx.doi.org/10.1103/PhysRev.150.1079
http://dx.doi.org/10.1016/0370-1573(89)90160-9
http://dx.doi.org/10.1007/BF01338361
http://dx.doi.org/10.1007/BF01338578
http://dx.doi.org/10.1016/j.physleta.2020.126671

	 Introduction
	Conventional Quantum Hydrodynamics
	Complex Hydrodynamical Formulation
	Notation
	Continuity Equation
	Example
	Euler Equation

	Conclusions
	References

