Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (72)

Search Parameters:
Keywords = MLSA

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1644 KB  
Article
Bacteria Causing Pith Necrosis and Tissue Discoloration in Tomato
by Darío Alvarado-Rodríguez, Gabriel Vargas Asensio, Fernando García-Santamaría, Walter Barrantes-Santamaría and Mónica Blanco-Meneses
Horticulturae 2025, 11(11), 1362; https://doi.org/10.3390/horticulturae11111362 - 13 Nov 2025
Cited by 1 | Viewed by 1134
Abstract
Tomato is one of the most important vegetable crops in Costa Rica, where favorable environmental conditions enabled year-round production but also promote bacterial diseases. In recent years, pith necrosis has been frequently observed; nevertheless, the causal agents remain unidentified in the country. This [...] Read more.
Tomato is one of the most important vegetable crops in Costa Rica, where favorable environmental conditions enabled year-round production but also promote bacterial diseases. In recent years, pith necrosis has been frequently observed; nevertheless, the causal agents remain unidentified in the country. This study evaluated bacteria associated with symptomatic plants collected in the Central Valley of Costa Rica. From 32 plants, 61 bacterial isolates were obtained, described morphologically, and characterized through basic biochemical tests. Partial sequencing of the 16S rRNA gene revealed diverse bacterial taxa, predominantly belonging to the genus Pseudomonas. Thirteen isolates were selected for pathogenicity assays, which confirmed variable virulence levels. Multilocus sequence analysis based on concatenated sequences of the 16S rRNA, gyrB, rpoD, and rpoB genes identified Pseudomonas alliivorans LTM 13.1.2, P. flavescens LTM 14.2.2, and P. capsici LTM 78.3.2 as causal agents of pith necrosis. Additionally, P. straminea LTM 78.2.1 and Cedecea sp. LTM 72.2.1 caused tissue discoloration. Whole-genome sequencing of the two most virulent isolates (LTM 13.1.2 and LTM 78.3.2) supported their taxonomic classification and revealed virulence-associated genes and biosynthetic clusters. This study represents the first report of these Pseudomonas species as tomato pathogens in Costa Rica and expands their known distribution and host ranges. Full article
(This article belongs to the Section Plant Pathology and Disease Management (PPDM))
Show Figures

Figure 1

17 pages, 5839 KB  
Article
Cryptic Diversity and Ecological Overlap in Sporothrix schenckii: Insights from Multilocus Phylogenetics of Clinical and Environmental Isolates
by Carolina Brunner-Mendoza, Anderson Messias Rodrigues, Esperanza Duarte-Escalante, María del Rocío Reyes-Montes, Amelia Pérez-Mejía, Hortensia Navarro-Barranco, María del Carmen Calderón-Ezquerro and Conchita Toriello
J. Fungi 2025, 11(11), 759; https://doi.org/10.3390/jof11110759 - 22 Oct 2025
Viewed by 997
Abstract
Sporothrix schenckii is a pathogenic fungus with both clinical and environmental origins that was traditionally described as a single species but is increasingly recognized as being genetically diverse. In this study, we analyzed multiple isolates recovered from human sporotrichosis cases and environmental sources [...] Read more.
Sporothrix schenckii is a pathogenic fungus with both clinical and environmental origins that was traditionally described as a single species but is increasingly recognized as being genetically diverse. In this study, we analyzed multiple isolates recovered from human sporotrichosis cases and environmental sources across Latin America (Mexico, Guatemala, Colombia). We conducted a polyphasic analysis of 16 isolates, integrating morphological data with multilocus sequence analysis (MLSA) targeting the internal transcribed spacer (ITS), calmodulin (CAL), β-tubulin (BT2), and translation elongation factor 1-α (TEF) gene regions. Phylogenetic relationships were resolved via maximum likelihood, and genetic structure was corroborated via four independent clustering methods: minimum spanning tree, principal component analysis, multidimensional scaling, and self-organizing maps. MLSA reidentified six isolates as S. globosa and confirmed the absence of S. brasiliensis in the cohort. The remaining S. schenckii s. str. isolates were resolved into three clades (A, B, and C). Notably, clade B (EH748, EH194, and EH257) formed a genetically divergent cluster with the highest nucleotide diversity (π = 0.03556) and was consistently segregated by all clustering algorithms. Clinical and environmental isolates were phylogenetically intermingled, supporting an active environmental reservoir for human infections. Phenotypic data, including colony size and conidial and yeast dimensions, varied but did not clearly distinguish between clinical and environmental origins. Our study provides compelling molecular evidence for a previously unrecognized, highly divergent clade within S. schenckii s. str., indicative of ongoing cryptic speciation. These findings refine the taxonomy of medically important Sporothrix species and reveal a distinct epidemiological profile for sporotrichosis in the studied regions, separate from the S. brasiliensis-driven epizootic. This highlights the critical role of molecular surveillance for accurate diagnosis, treatment, and public health strategies. Full article
(This article belongs to the Section Fungal Evolution, Biodiversity and Systematics)
Show Figures

Figure 1

12 pages, 1328 KB  
Article
Molecular and Biochemical Characterization of Xanthomonas arboricola pv. corylina Isolates Infecting Hazelnut Orchards in Chile
by Gastón Higuera, Brenda Ossa, Alan Zamorano, Pamela Córdova, Belén Díaz, Sebastián Cabrera, Tomás Llantén, Javiera Fuentes, Camila Gamboa, Weier Cui, Assunta Bertaccini, Carolina Ilabaca-Díaz, Set Pérez Fuentealba, Simón Navarrete, Héctor García and Nicola Fiore
Plants 2025, 14(20), 3148; https://doi.org/10.3390/plants14203148 - 13 Oct 2025
Viewed by 1032
Abstract
In recent years, the cultivated area of hazelnuts in Chile has increased significantly. Along with this rapid expansion, biotic constraints that affect the optimal development of the crop have been identified. Among these, bacterial blight disease caused by Xanthomonas arboricola pv. corylina has [...] Read more.
In recent years, the cultivated area of hazelnuts in Chile has increased significantly. Along with this rapid expansion, biotic constraints that affect the optimal development of the crop have been identified. Among these, bacterial blight disease caused by Xanthomonas arboricola pv. corylina has been particularly relevant. This pathogen has a global distribution and is present in all hazelnut-producing countries. In the spring of 2023, hazelnut orchards were sampled from the Maule to Biobío Regions of Chile. The Chilean isolates recovered from hazelnut tissues showing symptoms of bacterial blight were characterized by their ability to grow on different semi-selective media, their carbohydrate utilization profiles, hypersensitivity response in tobacco plants, and biochemical tests. Additionally, the isolates were identified based on the 16S rRNA gene and multilocus sequence analysis (MLSA) on the rpoD, gyrB, and atpD genes. The results showed that the X. arboricola pv. corylina Chilean isolates differed from previously reported isolates in other geographic areas as they are capable of metabolizing sorbitol and mannitol. Using MLSA and average nucleotide identity (ANI) comparison, these isolates were grouped into four and five phylogenetic clades, respectively, representing a significant difference from what has been reported in similar international studies. Full article
(This article belongs to the Collection Plant Disease Diagnostics and Surveillance in Plant Protection)
Show Figures

Figure 1

19 pages, 1874 KB  
Article
The Effect of Climate Variables, Soil Characteristics, and Peanut Cultivars on the Rhizobial Bacteria Community
by Juan Li, Zhong-De Yang, En-Tao Wang, Li-Qin Sun and Yan Li
Microorganisms 2025, 13(4), 926; https://doi.org/10.3390/microorganisms13040926 - 17 Apr 2025
Cited by 1 | Viewed by 1034
Abstract
Peanuts are widely cultivated across the world; however, peanut’s rhizobial community and the determinant factors of their composition are still to be elucidated. This study investigates the biogeography and determinant soil environmental factors for peanut rhizobia. A total of 1001 rhizobial isolates were [...] Read more.
Peanuts are widely cultivated across the world; however, peanut’s rhizobial community and the determinant factors of their composition are still to be elucidated. This study investigates the biogeography and determinant soil environmental factors for peanut rhizobia. A total of 1001 rhizobial isolates were obtained from the peanut root nodules, mainly belonging to two cultivars (X9 and M6) cultivated in 20 sampling sites across China. According to recA sequence analysis, all the isolates were classified as 84 haplotypes, and a representative strain for each haplotype was randomly selected to perform subsequent analyses. Based on multilocus sequence analysis (MLSA) of housekeeping genes dnaK, glnII, gyrB, recA, and rpoB, all the representative strains were classified as 42 genospecies in the genus Bradyrhizobium, including 12 effectively published and 30 undefined genospecies. Strains belonging to six genospecies were predominant (>5%), including B. ottawaense, B. liaoningense, B. yuanmingense, Bradyrhizobium sp. XXIX, B. guangdongense, and B. nanningense. However, only a single isolate was obtained for 15 genospecies. The diversity indices of peanut rhizobia distributed in South China are obviously higher than those in North China, but no obvious peanut cultivar selection for rhizobial genospecies was found. Correlation analyses indicated that the community composition of peanut rhizobia was mainly affected by MAP, MAT, soil AP, and pH. Nodulation tests indicated that the 79 representative strains belonging to 37 genospecies with both nodC and nifH could perform nitrogen-fixing symbiosis with peanuts. This study revealed the great diversity and varied composition of communities of peanut rhizobia in different geographic regions across China. Full article
(This article belongs to the Special Issue Nitrogen-Fixing Bacteria and Plant–Microbe Interaction)
Show Figures

Figure 1

16 pages, 8819 KB  
Article
Brassica oleracea var. sabellica: A New Host of Agroathelia delphinii in Soilless Cultivation Systems in Central Thailand
by Santiti Bincader, Ratiya Pongpisutta, Thipwara Tiansawang, Sirorat Khienman, Panida Boonyaritthongchai, Vipaporn Phuntumart and Chainarong Rattanakreetakul
Horticulturae 2025, 11(4), 411; https://doi.org/10.3390/horticulturae11040411 - 11 Apr 2025
Cited by 1 | Viewed by 1875
Abstract
Kale (Brassica oleracea var. sabellica), known for its high nutritional value and health benefits, has gained significant popularity. Recently, kale grown in soilless systems has also become increasingly popular, as these systems offer better environmental control and improve overall quality, making [...] Read more.
Kale (Brassica oleracea var. sabellica), known for its high nutritional value and health benefits, has gained significant popularity. Recently, kale grown in soilless systems has also become increasingly popular, as these systems offer better environmental control and improve overall quality, making them an ideal method for cultivating kale. However, in 2023–2024, several kale plants exhibited severe symptoms of seedling and stem rot leading to losses of over 70% in both quality and yield. In this study, the infectious isolates were obtained from stem rot kale grown in soilless cultivation greenhouses across three provinces in central Thailand. The pathogens were identified through a combination of morphological characteristics and molecular techniques, utilizing nucleotide sequences from the internal transcribed spacer (ITS1-5.8S-ITS2) and large subunit ribosomal RNA (LSU rDNA). Pathogenicity tests and Koch’s postulates on 2-month-old kale plants confirmed that the fungus was responsible for causing brown stem lesions and rot. Morphological features and multilocus sequence analysis (MLSA) identified the pathogen as Agroathelia delphinii. This research represents the first report of A. delphinii infecting kale in Thailand, offering crucial insights for accurate disease diagnosis and the development of effective management strategies in soilless cultivation systems, which is essential for improving productivity in increasingly variable environments. Full article
(This article belongs to the Special Issue Fungal Diseases in Horticultural Crops)
Show Figures

Figure 1

18 pages, 6259 KB  
Article
Description and Genome-Based Analysis of Vibrio chaetopteri sp. nov., a New Species of the Mediterranei Clade Isolated from a Marine Polychaete
by Valeriya Kurilenko, Evgenia Bystritskaya, Nadezhda Otstavnykh, Peter Velansky, Darina Lichmanuk, Yulia Savicheva, Lyudmila Romanenko and Marina Isaeva
Microorganisms 2025, 13(3), 638; https://doi.org/10.3390/microorganisms13030638 - 11 Mar 2025
Cited by 2 | Viewed by 1819
Abstract
Two novel strains, CB1-14T and CB2-10, were isolated from the marine polychaetes Chaetopterus cautus from the Sea of Japan. Phylogenetic analysis based on the 16S rRNA sequences revealed that the two strains belong to the genus Vibrio, sharing 98.96% identity with [...] Read more.
Two novel strains, CB1-14T and CB2-10, were isolated from the marine polychaetes Chaetopterus cautus from the Sea of Japan. Phylogenetic analysis based on the 16S rRNA sequences revealed that the two strains belong to the genus Vibrio, sharing 98.96% identity with Vibrio hangzhouensis CN 83T. MLSA using five protein-coding genes (ftsZ, gyrA, gyrB, mreB, and rpoA) showed that CB1-14T and CB2-10 are closely related to the members of the Mediterranei clade, namely Vibrio mediterranei CECT 621T, Vibrio barjaei 3062T, Vibrio thalassae CECT 8203T, Vibrio hangzhouensis CGMCC 1.7062T, Vibrio maritimus CAIM 1455T, and Vibrio variabilis CAIM 1454T. Based on both MLST neighbor-net phylogenetic network and phylogenomic tree results, they fell into the subclade formed by V. maritimus CAIM 1455T and V. variabilis CAIM 1454T. Both new strains CB1-14T and CB2-10 showed the highest ANI/AAI values of 91.3%/92.7% with V. variabilis CAIM 1454T and 90.3%/93.1% with V. maritimus CAIM 1455T. The dDDH values between strain CB1-14T and the members of the Mediterranei clade ranged from 20.9% to 45.7%. Major fatty acids were C16:1ω9c, C16:1ω7c, and C18:1ω9c, followed by C16:0 and C18:1ω7c. The genome of CB1-14T is 5,591,686 bp in size, with DNA G+C content of 46.1%. It consists of two circular chromosomes (3,497,892 and 1,804,652 bp) and one plasmid (241,015 bp) and comprises 4782 protein-coding genes and 10 rrn operons. The CB1-14T and CB2-10 genomes were enriched in CAZyme-encoding genes of the following families: GH1, GH3, GH13, GH23, GH43, GH94, PL17, and CE4, indicating the potential to catabolize alginate, xylan, and chitin, common polysaccharides in marine ecosystems. Based on the combined phylogenomic analyses and phenotypic properties, a new species, Vibrio chaetopteri sp. nov., is proposed, with CB1-14T = (KMM 8419T = KCTC 92790T) as the type strain. Full article
Show Figures

Figure 1

17 pages, 7042 KB  
Article
Acid Sphingomyelinase Regulates AdipoRon-Induced Differentiation of Arterial Smooth Muscle Cells via TFEB Activation
by Xiang Li, Wei Zhao, Zhengchao Wang, Alexandra K. Moura, Kiana Roudbari, Rui Zuo, Jenny Z. Hu, Yun-Ting Wang, Pin-Lan Li and Yang Zhang
Int. J. Mol. Sci. 2025, 26(5), 2147; https://doi.org/10.3390/ijms26052147 - 27 Feb 2025
Cited by 1 | Viewed by 1891
Abstract
AdipoRon is a selective adiponectin receptor agonist that inhibits vascular remodeling by promoting the differentiation of arterial smooth muscle cells (SMCs). Our recent studies have demonstrated that activation of TFEB and its downstream autophagy–lysosomal signaling contribute to adipoRon-induced differentiation of SMCs. The present [...] Read more.
AdipoRon is a selective adiponectin receptor agonist that inhibits vascular remodeling by promoting the differentiation of arterial smooth muscle cells (SMCs). Our recent studies have demonstrated that activation of TFEB and its downstream autophagy–lysosomal signaling contribute to adipoRon-induced differentiation of SMCs. The present study was designed to examine whether acid sphingomyelinase (ASM; gene symbol Smpd1) is involved in mediating adipoRon-induced activation of TFEB–autophagy signaling and inhibition of proliferation/migration in arterial SMCs. Our results showed that adipoRon induced ASM expression and ceramide production in Smpd1+/+ SMCs, which were abolished in Smpd1−/− SMCs. Compared to Smpd1+/+ SMCs, Smpd1−/− SMCs exhibited less TFEB nuclear translocation and activation of autophagy signaling induced by adipoRon stimulation. SMC differentiation was further characterized by retarded wound healing, reduced proliferation, F-actin reorganization, and MMP downregulation. The results showed that Smpd1−/− SMCs were less responsive to adipoRon-induced differentiation than Smpd1+/+ SMCs. Mechanistically, adipoRon increased the expression of protein phosphatases such as calcineurin and PP2A in Smpd1+/+ SMCs. The calcineurin inhibitor FK506/cyclosporin A or PP2A inhibitor okadaic acid significantly attenuated adipoRon-induced activation of TFEB–autophagy signaling. In addition, adipoRon-induced expressions of calcineurin and PP2A were not observed in Smpd1−/− SMCs. However, activation of calcineurin by lysosomal TRPML1-Ca2+ channel agonist ML-SA1 rescued the activation of TFEB–autophagy signaling and the effects of adipoRon on cell differentiation in Smpd1−/− SMCs. Taken together, these data suggested that ASM regulates adipoRon-induced SMC differentiation through TFEB activation. This study provided novel mechanistic insights into the therapeutic effects of adipoRon on TFEB signaling and pathological vascular remodeling. Full article
(This article belongs to the Special Issue Smooth Muscle Cells in Vascular Disease)
Show Figures

Figure 1

11 pages, 4543 KB  
Article
Antimicrobial Peptide CATH-2 Attenuates Avian Pathogenic E. coli-Induced Inflammatory Response via NF-κB/NLRP3/MAPK Pathway and Lysosomal Dysfunction in Macrophages
by Yating Xu, Liuyi Xu, Tingting Zhang, Hongliang Tian, Yi Lu, Sha Jiang, Xuefeng Cao, Zhiwei Li, Xiaoxiang Hu, Rendong Fang and Lianci Peng
Int. J. Mol. Sci. 2024, 25(23), 12572; https://doi.org/10.3390/ijms252312572 - 22 Nov 2024
Cited by 3 | Viewed by 1736
Abstract
Cathelicidins have anti-inflammatory activity and chicken cathelicidin-2 (CATH-2) has shown to modulate immune response, but the underlying mechanism of its anti-inflammation is still unclear. Therefore, in this study, we investigated the anti-inflammatory activity of CATH-2 on murine peritoneal macrophages during avian pathogenic E. [...] Read more.
Cathelicidins have anti-inflammatory activity and chicken cathelicidin-2 (CATH-2) has shown to modulate immune response, but the underlying mechanism of its anti-inflammation is still unclear. Therefore, in this study, we investigated the anti-inflammatory activity of CATH-2 on murine peritoneal macrophages during avian pathogenic E. coli (APEC) infection. The results showed that CATH-2 priming significantly reduced the production of IL-1β, IL-6, IL-1α, and IL-12. In addition, CATH-2 significantly attenuated APEC-induced caspase-1 activation and the formation of an adaptor (ASC) of NLRP3 inflammasome, indicating that CATH-2 inhibits APEC-induced NLRP3 inflammasome activation. Furthermore, CATH-2 remarkably inhibited NF-κB and MAPK signaling pathways activation. Moreover, CATH-2 significantly inhibited mRNA expression of cathepsin B and inhibited lysosomal acidification, demonstrating that CATH-2 disrupts lysosomal function. In addition, promoting lysosomal acidification using ML-SA1 hampered the anti-inflammatory effect of CATH-2 on APEC-infected cells. In conclusion, our study reveals that CATH-2 inhibits APEC-induced inflammation via the NF-κB/NLRP3/MAPK pathway through the dysfunction of lysosome. Full article
(This article belongs to the Special Issue Antimicrobial and Antiviral Peptides)
Show Figures

Figure 1

15 pages, 1906 KB  
Article
Bacterial Communities Nodulating Lupinus cosentinii Gus. and Their Inputs in the Worldwide Phylogeography of Lupine Endosymbionts
by Mokhtar Rejili, Mohamed Ali Benabderrahim and Mohamed Mars
Soil Syst. 2024, 8(4), 119; https://doi.org/10.3390/soilsystems8040119 - 17 Nov 2024
Viewed by 1585
Abstract
Genetic variability in bacterial populations that nodulate Lupinus cosentinii in Tunisia was investigated. Phylogenetic studies of 40 isolates using recA partial sequences categorized them into three clusters within the Bradyrhizobium genus. Twenty-three strains selected from the three clusters were thoroughly examined through housekeeping [...] Read more.
Genetic variability in bacterial populations that nodulate Lupinus cosentinii in Tunisia was investigated. Phylogenetic studies of 40 isolates using recA partial sequences categorized them into three clusters within the Bradyrhizobium genus. Twenty-three strains selected from the three clusters were thoroughly examined through housekeeping genes (recA, glnII and rpoB) multilocus sequence analysis (MLSA). Our results showed that 23 representative strains were distributed in five distinct clusters, with 13 strains belonging to Bradyrhizobium canariense BTA-1T/Bradyrhizobium lupini USDA3051T (10 strains) and Bradyrhizobium hipponense aSej3T (three strains) lineages. Interestingly, eight strains occupied a separate position and could belong to two putative novel Bradyrhizobium species. The nodC phylogeny placed the 23 strains within three symbiovars: genistearum (19 strains), lupini (two strains) and, for the first time, the symbiovar cyanophyllae (two strains). Based on the worldwide phylogeography of rhizobial symbionts nodulating lupine (14 species), our results reported that eight species occurred in more than one continent, and six species were specific for one continent, e.g., Bradyrhizobium rifense, Bradyrhizobium diazoefficiens, Phyllobacterium sp. and Devosia sp. were specific to the African continent, the Bradyrhizobium iriomotense/Bradyrhizobium stylosanthis group to America, and Bradyrhizobium valentinum to the European continent. Full article
(This article belongs to the Special Issue Microbial Community Structure and Function in Soils)
Show Figures

Figure 1

21 pages, 4295 KB  
Article
Activation of the TRPML1 Ion Channel Induces Proton Secretion in the Human Gastric Parietal Cell Line HGT-1
by Alina Ulrike Mueller, Gaby Andersen, Phil Richter and Veronika Somoza
Int. J. Mol. Sci. 2024, 25(16), 8829; https://doi.org/10.3390/ijms25168829 - 13 Aug 2024
Cited by 2 | Viewed by 3330
Abstract
The lysosomal Ca2+ channel TRPML1 was found to be responsible for gastric acid secretion in murine gastric parietal cells by inducing the trafficking of H+/K+-ATPase containing tubulovesicles to the apical membrane. Therefore, we hypothesized a similar role of [...] Read more.
The lysosomal Ca2+ channel TRPML1 was found to be responsible for gastric acid secretion in murine gastric parietal cells by inducing the trafficking of H+/K+-ATPase containing tubulovesicles to the apical membrane. Therefore, we hypothesized a similar role of TRPML1 in regulating proton secretion in the immortalized human parietal cell line HGT-1. The primary focus was to investigate the involvement of TRPML1 in proton secretion using the known synthetic agonists ML-SA1 and ML-SA5 and the antagonist ML-SI3 and, furthermore, to identify food-derived compounds that target the channel. Proton secretion stimulated by ML-SA1 was reduced by 122.2 ± 22.7% by the antagonist ML-SI3. The steroid hormone 17β-estradiol, present in animal-derived foods, diminished the proton secretory effect of ML-SA1 by 63.4 ± 14.5%. We also demonstrated a reduction in the proton secretory effects of ML-SA1 and ML-SA5 on TRPML1 knock-down cells. The food-derived compounds sulforaphane and trehalose promoted proton secretion in HGT-1 cells but may act independently of TRPML1. Also, histamine- and caffeine-induced proton secretion were affected by neither the TRPML1 antagonist ML-SI3 nor the TRPML1 knock-down. In summary, the results obtained suggest that the activation of TRPML1 promotes proton secretion in HGT-1 cells, but the channel may not participate in canonical signaling pathways. Full article
(This article belongs to the Special Issue TRP Channels in Physiology and Pathophysiology 2.0)
Show Figures

Graphical abstract

20 pages, 3510 KB  
Article
Microvirga sesbaniae sp. nov. and Microvirga yunnanensis sp. nov., Pink-Pigmented Bacteria Isolated from Root Nodules of Sesbania cannabina (Retz.) Poir.
by Nan Shi, Teng He, Huifang Qin, Ziye Wang, Shenghao You, Entao Wang, Guoli Hu, Fang Wang, Miao Yu, Xiaoyun Liu and Zhenyu Liu
Microorganisms 2024, 12(8), 1558; https://doi.org/10.3390/microorganisms12081558 - 30 Jul 2024
Cited by 4 | Viewed by 2058
Abstract
Four pigment-producing rhizobial strains nodulating Sesbania cannabina (Retz.) Poir. formed a unique group in genus Microvirga in the phylogeny of a 16S rRNA gene and five housekeeping genes (gyrB, recA, dnaK, glnA, and atpD) in a genome [...] Read more.
Four pigment-producing rhizobial strains nodulating Sesbania cannabina (Retz.) Poir. formed a unique group in genus Microvirga in the phylogeny of a 16S rRNA gene and five housekeeping genes (gyrB, recA, dnaK, glnA, and atpD) in a genome analysis, phenotypic characteristics analysis, and chemotaxonomic analysis. These four strains shared as high as 99.3% similarity with Microvirga tunisiensis LmiM8T in the 16S rRNA gene sequence and, in an MLSA, were subdivided into two clusters, ANI (genome average nucleotide) and dDDH (digital DNA–DNA hybridization) which shared sequence similarities lower than the species thresholds with each other and with the reference strains for related Microvirga species. The polar lipids elucidated that phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), and cardiolipin were the main components for strain SWF67558T and for strain HBU65207T, with the exception of PC. SWF67558T and HBU65207T strains had similar predominant cellular fatty acids, including C16:0, C18:0, summed feature 2, and summed feature8, but with different contents. In addition, all the four novel strains produced pink-pigment, and the main coloring material extract from strain SWF67558T was identified as zeaxanthin, which presented antioxidant ability and reduction power. With all the phylogenetic and phenotypic divergency, we proposed these pink-pigmented symbiotic bacteria as two novel species, named Microvirga sesbaniae sp. nov. and Microvirga yunnanensis sp. nov., with SWF67558T (=KCTC82331T=GDMCC1.2024T) and HBU65207T (=KCTC92125T=GDMCC1.2023T) as the type strains, respectively. Full article
(This article belongs to the Special Issue Nitrogen-Fixing Microorganisms)
Show Figures

Figure 1

12 pages, 1649 KB  
Article
Phenotypic and Genomic Characterization of Pseudomonas wuhanensis sp. nov., a Novel Species with Promising Features as a Potential Plant Growth-Promoting and Biocontrol Agent
by Jiawei Hou, Kaiji Liao, Yong-Jie Zhang, Jun-Zhou Li and Hai-Lei Wei
Microorganisms 2024, 12(5), 944; https://doi.org/10.3390/microorganisms12050944 - 7 May 2024
Cited by 2 | Viewed by 2938
Abstract
Plant growth-promoting rhizobacterial strain FP607T was isolated from the rhizosphere of beets in Wuhan, China. Strain FP607T exhibited significant antagonism toward several phytopathogenic bacteria, indicating that FP607T may produce antimicrobial metabolites and has a stronger biocontrol efficacy against plant pathogens. [...] Read more.
Plant growth-promoting rhizobacterial strain FP607T was isolated from the rhizosphere of beets in Wuhan, China. Strain FP607T exhibited significant antagonism toward several phytopathogenic bacteria, indicating that FP607T may produce antimicrobial metabolites and has a stronger biocontrol efficacy against plant pathogens. Growth-promoting tests showed that FP607T produced indole-3-acetic acid (IAA), NH3, and ferritin. The genome sequence of strain FP607T was 6,590,972 bp long with 59.0% G + C content. The optimum temperature range was 25–30 °C, and the optimum pH was 7. The cells of strain FP607T were Gram-negative, short, and rod-shaped, with polar flagella. The colonies on the King’s B (KB) agar plates were light yellow, smooth, and circular, with regular edges. A phylogenetic analysis of the 16S rRNA sequence and a multilocus sequence analysis (MLSA) showed that strain FP607T was most closely related to the type of strain Pseudomonas farris SWRI79T. Based on a polyphasic taxonomic approach, strain FP607T was identified as a novel species within the genus Pseudomonas, for which the name Pseudomonas wuhanensis sp. nov. was proposed. The type of strain used was FP607T (JCM 35688, CGMCC 27743, and ACCC 62446). Full article
(This article belongs to the Section Microbiomes)
Show Figures

Figure 1

12 pages, 1242 KB  
Article
Staphylococcus hsinchuensis sp. nov., Isolated from Soymilk
by Yu-Ting Wang, Yu-Chun Lin, Yi-Huei Hsieh, Yu-Tzu Lin, Moriyuki Hamada, Chih-Chieh Chen, Jong-Shian Liou, Ai-Yun Lee, Wei-Ling Zhang, Yung-Tsung Chen and Chien-Hsun Huang
Pathogens 2024, 13(4), 343; https://doi.org/10.3390/pathogens13040343 - 21 Apr 2024
Cited by 1 | Viewed by 2923
Abstract
A novel coagulase-negative Staphylococcus strain (H164T) was isolated from soymilk in Taiwan. Comparative sequence analysis of the 16S rRNA gene revealed that the H164T strain is a member of the genus Staphylococcus. We used multilocus sequence analysis (MLSA) and [...] Read more.
A novel coagulase-negative Staphylococcus strain (H164T) was isolated from soymilk in Taiwan. Comparative sequence analysis of the 16S rRNA gene revealed that the H164T strain is a member of the genus Staphylococcus. We used multilocus sequence analysis (MLSA) and phylogenomic analyses to demonstrate that the novel strain was closely related to Staphylococcus gallinarum, Staphylococcus nepalensis, Staphylococcus cohnii, and Staphylococcus urealyuticus. The average nucleotide identity and digital DNA-DNA hybridization values between H164T and its closest relatives were <95% and <70%, respectively. The H164T strain could also be distinguished from its closest relatives by the fermentation of d-fructose, d-maltose, d-trehalose, and d-mannitol, as well as by the activities of α-glucosidase and alkaline phosphatase. The major cellular fatty acids were C15:0 iso and C15:0 anteiso, and the predominant menaquinones were MK-7 and MK-8, respectively. The major cellular fatty acids and predominant menaquinones were C15:0 iso and C15:0 anteiso and MK-7 and MK-8, respectively. In conclusion, this strain represents a novel species, named Staphylococcus hsinchuensis sp. nov., with the type strain H164T (=BCRC 81404T = NBRC 116174T). Full article
Show Figures

Figure 1

13 pages, 1850 KB  
Article
In-Depth Characterization of Crown Gall Disease of Tobacco in Serbia
by Renata Iličić, Aleksandra Jelušić, Goran Barać, Dušan Nikolić, Nemanja Stošić, Marco Scortichini and Tatjana Popović Milovanović
Agronomy 2024, 14(4), 851; https://doi.org/10.3390/agronomy14040851 - 19 Apr 2024
Cited by 3 | Viewed by 2855
Abstract
In August 2020, the unusual appearance of crown gall symptoms was observed on the tobacco plants (hybrid PVH2310) grown in fields in the Golubinci (Srem district, Serbia) locality. The causal agent isolated from galls located on tobacco roots formed circular, convex, and glistening [...] Read more.
In August 2020, the unusual appearance of crown gall symptoms was observed on the tobacco plants (hybrid PVH2310) grown in fields in the Golubinci (Srem district, Serbia) locality. The causal agent isolated from galls located on tobacco roots formed circular, convex, and glistening light blue colonies, and then dark to olive-green-colored bacterial colonies on a semi-selective D1 medium. Molecular analysis based on multiplex PCR and multi-locus sequence analysis (MLSA) using concatenated sequences of the atpD, dnaK, glnA, and rpoB genes as well as 16S rRNA identified Serbian tobacco isolates such as Agrobacterium tumefaciens (biovar 1). Two duplex PCR methods confirmed the presence of the virD2 and virC genes in tobacco isolates. Pathogenicity tests performed on carrot discs and squash fruits resulted in tumor/gall formation after 12 to 16 days post inoculation, respectively. Pathogenicity was also confirmed on tobacco plants, where isolates caused tumor development 21−25 days after inoculation. API 50 CH generated results regarding the biochemical features of the Serbian tobacco isolates. As A. tumefaciens (biovar 1) as a cause of tobacco crown gall has previously been documented solely in Japan, there is presently no data on its wider occurrence. Therefore, this first detailed investigation of A. tumefaciens isolated from naturally infected tobacco in Serbia will contribute to a better understanding of it at the global level. Full article
(This article belongs to the Special Issue Diseases of Herbaceous Plants)
Show Figures

Figure 1

16 pages, 2257 KB  
Article
Occurrence of Pseudomonas syringae pvs. actinidiae, actinidifoliorum and Other P. syringae Strains on Kiwifruit in Northern Spain
by Ana J. González, David Díaz, Marta Ciordia and Elena Landeras
Life 2024, 14(2), 208; https://doi.org/10.3390/life14020208 - 31 Jan 2024
Cited by 4 | Viewed by 3089
Abstract
Pseudomonas syringae pv. actinidiae (Psa), the agent causing bacterial canker of kiwifruit, has been present in the Principality of Asturias (PA), Northern Spain, since 2013, although with restricted distribution. In this study, 53 strains collected in kiwifruit orchards in PA during the period [...] Read more.
Pseudomonas syringae pv. actinidiae (Psa), the agent causing bacterial canker of kiwifruit, has been present in the Principality of Asturias (PA), Northern Spain, since 2013, although with restricted distribution. In this study, 53 strains collected in kiwifruit orchards in PA during the period 2014–2020 were characterized by a polyphasic approach including biochemical and phylogenetic analysis. Thirty-three strains, previously identified by PCR as Psa, have been found to be a homogeneous group in phylogenetic analysis, which seems to indicate that there have been few introductions of the pathogen into the region. Two strains were confirmed as P. syringae pv. actinidifoliorum (Pfm), so this is the first report of Pfm in the PA. The remaining 18 strains were found to be close to P. avellanae and P. syringae pv. antirrhini or to strains described as Pfm look-alikes. Pathogenicity tests carried out on peppers with a selection of strains have shown that both Psa and Pfm caused clear damage, while the 18 atypical strains caused variable lesions. It would be necessary to carry out pathogenicity testing of atypical strains on kiwifruit plants to study the role of these strains in the kiwifruit pathosystem to evaluate their pathogenic potential in this crop. Full article
Show Figures

Figure 1

Back to TopTop