Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = Local Constrained Non-negative Matrix Factorization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 6565 KB  
Article
Sparse Feature-Weighted Double Laplacian Rank Constraint Non-Negative Matrix Factorization for Image Clustering
by Hu Ma, Ziping Ma, Huirong Li and Jingyu Wang
Mathematics 2024, 12(23), 3656; https://doi.org/10.3390/math12233656 - 22 Nov 2024
Cited by 2 | Viewed by 1235
Abstract
As an extension of non-negative matrix factorization (NMF), graph-regularized non-negative matrix factorization (GNMF) has been widely applied in data mining and machine learning, particularly for tasks such as clustering and feature selection. Traditional GNMF methods typically rely on predefined graph structures to guide [...] Read more.
As an extension of non-negative matrix factorization (NMF), graph-regularized non-negative matrix factorization (GNMF) has been widely applied in data mining and machine learning, particularly for tasks such as clustering and feature selection. Traditional GNMF methods typically rely on predefined graph structures to guide the decomposition process, using fixed data graphs and feature graphs to capture relationships between data points and features. However, these fixed graphs may limit the model’s expressiveness. Additionally, many NMF variants face challenges when dealing with complex data distributions and are vulnerable to noise and outliers. To overcome these challenges, we propose a novel method called sparse feature-weighted double Laplacian rank constraint non-negative matrix factorization (SFLRNMF), along with its extended version, SFLRNMTF. These methods adaptively construct more accurate data similarity and feature similarity graphs, while imposing rank constraints on the Laplacian matrices of these graphs. This rank constraint ensures that the resulting matrix ranks reflect the true number of clusters, thereby improving clustering performance. Moreover, we introduce a feature weighting matrix into the original data matrix to reduce the influence of irrelevant features and apply an L2,1/2 norm sparsity constraint in the basis matrix to encourage sparse representations. An orthogonal constraint is also enforced on the coefficient matrix to ensure interpretability of the dimensionality reduction results. In the extended model (SFLRNMTF), we introduce a double orthogonal constraint on the basis matrix and coefficient matrix to enhance the uniqueness and interpretability of the decomposition, thereby facilitating clearer clustering results for both rows and columns. However, enforcing double orthogonal constraints can reduce approximation accuracy, especially with low-rank matrices, as it restricts the model’s flexibility. To address this limitation, we introduce an additional factor matrix R, which acts as an adaptive component that balances the trade-off between constraint enforcement and approximation accuracy. This adjustment allows the model to achieve greater representational flexibility, improving reconstruction accuracy while preserving the interpretability and clustering clarity provided by the double orthogonality constraints. Consequently, the SFLRNMTF approach becomes more robust in capturing data patterns and achieving high-quality clustering results in complex datasets. We also propose an efficient alternating iterative update algorithm to optimize the proposed model and provide a theoretical analysis of its performance. Clustering results on four benchmark datasets demonstrate that our method outperforms competing approaches. Full article
Show Figures

Figure 1

15 pages, 10099 KB  
Article
Separation and Extraction of Compound-Fault Signal Based on Multi-Constraint Non-Negative Matrix Factorization
by Mengyang Wang, Wenbao Zhang, Mingzhen Shao and Guang Wang
Entropy 2024, 26(7), 583; https://doi.org/10.3390/e26070583 - 9 Jul 2024
Cited by 4 | Viewed by 1451
Abstract
To solve the separation of multi-source signals and detect their features from a single channel, a signal separation method using multi-constraint non-negative matrix factorization (NMF) is proposed. In view of the existing NMF algorithm not performing well in the underdetermined blind source separation, [...] Read more.
To solve the separation of multi-source signals and detect their features from a single channel, a signal separation method using multi-constraint non-negative matrix factorization (NMF) is proposed. In view of the existing NMF algorithm not performing well in the underdetermined blind source separation, the β-divergence constraints and determinant constraints are introduced in the NMF algorithm, which can enhance local feature information and reduce redundant components by constraining the objective function. In addition, the Sine-bell window function is selected as the processing method for short-time Fourier transform (STFT), and it can preserve the overall feature distribution of the original signal. The original vibration signal is first transformed into time–frequency domain with the STFT, which describes the local characteristic of the signal from the time–frequency distribution. Then, the multi-constraint NMF is applied to reduce the dimensionality of the data and separate feature components in the low dimensional space. Meanwhile, the parameter WK is constructed to filter the reconstructed signal that recombined with the feature component in the time domain. Ultimately, the separated signals will be subjected to envelope spectrum analysis to detect fault features. The simulated and experimental results indicate the effectiveness of the proposed approach, which can realize the separation of multi-source signals and their fault diagnosis of bearings. In addition, it is also confirmed that the proposed method, juxtaposed with the NMF algorithm of the traditional objective function, is more applicable for compound fault diagnosis of the rotating machinery. Full article
Show Figures

Figure 1

25 pages, 6562 KB  
Article
Dual Space Latent Representation Learning for Image Representation
by Yulei Huang, Ziping Ma, Huirong Li and Jingyu Wang
Mathematics 2023, 11(11), 2526; https://doi.org/10.3390/math11112526 - 31 May 2023
Cited by 1 | Viewed by 2021
Abstract
Semi-supervised non-negative matrix factorization (NMF) has achieved successful results due to the significant ability of image recognition by a small quantity of labeled information. However, there still exist problems to be solved such as the interconnection information not being fully explored and the [...] Read more.
Semi-supervised non-negative matrix factorization (NMF) has achieved successful results due to the significant ability of image recognition by a small quantity of labeled information. However, there still exist problems to be solved such as the interconnection information not being fully explored and the inevitable mixed noise in the data, which deteriorates the performance of these methods. To circumvent this problem, we propose a novel semi-supervised method named DLRGNMF. Firstly, dual latent space is characterized by the affinity matrix to explicitly reflect the interrelationship between data instances and feature variables, which can exploit the global interconnection information in dual space and reduce the adverse impacts caused by noise and redundant information. Secondly, we embed the manifold regularization mechanism in the dual graph to steadily retain the local manifold structure of dual space. Moreover, the sparsity and the biorthogonal condition are integrated to constrain matrix factorization, which can greatly improve the algorithm’s accuracy and robustness. Lastly, an effective alternating iterative updating method is proposed, and the model is optimized. Empirical evaluation on nine benchmark datasets demonstrates that DLRGNMF is more effective than competitive methods. Full article
(This article belongs to the Section E1: Mathematics and Computer Science)
Show Figures

Figure 1

17 pages, 2023 KB  
Article
MDSCMF: Matrix Decomposition and Similarity-Constrained Matrix Factorization for miRNA–Disease Association Prediction
by Jiancheng Ni, Lei Li, Yutian Wang, Cunmei Ji and Chunhou Zheng
Genes 2022, 13(6), 1021; https://doi.org/10.3390/genes13061021 - 6 Jun 2022
Cited by 3 | Viewed by 3036
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that are related to a number of complicated biological processes, and numerous studies have demonstrated that miRNAs are closely associated with many human diseases. In this study, we present a matrix decomposition and similarity-constrained matrix factorization (MDSCMF) [...] Read more.
MicroRNAs (miRNAs) are small non-coding RNAs that are related to a number of complicated biological processes, and numerous studies have demonstrated that miRNAs are closely associated with many human diseases. In this study, we present a matrix decomposition and similarity-constrained matrix factorization (MDSCMF) to predict potential miRNA–disease associations. First of all, we utilized a matrix decomposition (MD) algorithm to get rid of outliers from the miRNA–disease association matrix. Then, miRNA similarity was determined by utilizing similarity kernel fusion (SKF) to integrate miRNA function similarity and Gaussian interaction profile (GIP) kernel similarity, and disease similarity was determined by utilizing SKF to integrate disease semantic similarity and GIP kernel similarity. Furthermore, we added L2 regularization terms and similarity constraint terms to non-negative matrix factorization to form a similarity-constrained matrix factorization (SCMF) algorithm, which was applied to make prediction. MDSCMF achieved AUC values of 0.9488, 0.9540, and 0.8672 based on fivefold cross-validation (5-CV), global leave-one-out cross-validation (global LOOCV), and local leave-one-out cross-validation (local LOOCV), respectively. Case studies on three common human diseases were also implemented to demonstrate the prediction ability of MDSCMF. All experimental results confirmed that MDSCMF was effective in predicting underlying associations between miRNAs and diseases. Full article
Show Figures

Figure 1

32 pages, 2544 KB  
Article
Using a Panchromatic Image to Improve Hyperspectral Unmixing
by Simon Rebeyrol, Yannick Deville, Véronique Achard, Xavier Briottet and Stephane May
Remote Sens. 2020, 12(17), 2834; https://doi.org/10.3390/rs12172834 - 1 Sep 2020
Cited by 6 | Viewed by 4287
Abstract
Hyperspectral unmixing is a widely studied field of research aiming at estimating the pure material signatures and their abundance fractions from hyperspectral images. Most spectral unmixing methods are based on prior knowledge and assumptions that induce limitations, such as the existence of at [...] Read more.
Hyperspectral unmixing is a widely studied field of research aiming at estimating the pure material signatures and their abundance fractions from hyperspectral images. Most spectral unmixing methods are based on prior knowledge and assumptions that induce limitations, such as the existence of at least one pure pixel for each material. This work presents a new approach aiming to overcome some of these limitations by introducing a co-registered panchromatic image in the unmixing process. Our method, called Heterogeneity-Based Endmember Extraction coupled with Local Constrained Non-negative Matrix Factorization (HBEE-LCNMF), has several steps: a first set of endmembers is estimated based on a heterogeneity criterion applied on the panchromatic image followed by a spectral clustering. Then, in order to complete this first endmember set, a local approach using a constrained non-negative matrix factorization strategy, is proposed. The performance of our method, in regards of several criteria, is compared to those of state-of-the-art methods obtained on synthetic and satellite data describing urban and periurban scenes, and considering the French HYPXIM/HYPEX2 mission characteristics. The synthetic images are built with real spectral reflectances and do not contain a pure pixel for each endmember. The satellite images are simulated from airborne acquisition with the spatial and spectral features of the mission. Our method demonstrates the benefit of a panchromatic image to reduce some well-known limitations in unmixing hyperspectral data. On synthetic data, our method reduces the spectral angle between the endmembers and the real material spectra by 46% compared to the Vertex Component Analysis (VCA) and N-finder (N-FINDR) methods. On real data, HBEE-LCNMF and other methods yield equivalent performance, but, the proposed method shows more robustness over the data sets compared to the tested state-of-the-art methods. Moreover, HBEE-LCNMF does not require one to know the number of endmembers. Full article
(This article belongs to the Special Issue Machine Learning and Pattern Analysis in Hyperspectral Remote Sensing)
Show Figures

Graphical abstract

16 pages, 7676 KB  
Article
A Novel Signal Separation Method Based on Improved Sparse Non-Negative Matrix Factorization
by Huaqing Wang, Mengyang Wang, Junlin Li, Liuyang Song and Yansong Hao
Entropy 2019, 21(5), 445; https://doi.org/10.3390/e21050445 - 28 Apr 2019
Cited by 13 | Viewed by 4248
Abstract
In order to separate and extract compound fault features of a vibration signal from a single channel, a novel signal separation method is proposed based on improved sparse non-negative matrix factorization (SNMF). In view of the traditional SNMF failure to perform well in [...] Read more.
In order to separate and extract compound fault features of a vibration signal from a single channel, a novel signal separation method is proposed based on improved sparse non-negative matrix factorization (SNMF). In view of the traditional SNMF failure to perform well in the underdetermined blind source separation, a constraint reference vector is introduced in the SNMF algorithm, which can be generated by the pulse method. The square wave sequences are constructed as the constraint reference vector. The output separated signal is constrained by the vector, and the vector will update according to the feedback of the separated signal. The redundancy of the mixture signal will be reduced during the constantly updating of the vector. The time–frequency distribution is firstly applied to capture the local fault features of the vibration signal. Then the high dimension feature matrix of time–frequency distribution is factorized to select local fault features with the improved SNMF method. Meanwhile, the compound fault features can be separated and extracted automatically by using the sparse property of the improved SNMF method. Finally, envelope analysis is used to identify the feature of the output separated signal and realize compound faults diagnosis. The simulation and test results show that the proposed method can effectively solve the separation of compound faults for rotating machinery, which can reduce the dimension and improve the efficiency of algorithm. It is also confirmed that the feature extraction and separation capability of proposed method is superior to the traditional SNMF algorithm. Full article
(This article belongs to the Special Issue Entropy-Based Fault Diagnosis)
Show Figures

Figure 1

19 pages, 5494 KB  
Article
An Endmember Initialization Scheme for Nonnegative Matrix Factorization and Its Application in Hyperspectral Unmixing
by Jingjing Cao, Li Zhuo and Haiyan Tao
ISPRS Int. J. Geo-Inf. 2018, 7(5), 195; https://doi.org/10.3390/ijgi7050195 - 18 May 2018
Cited by 13 | Viewed by 4993
Abstract
Nonnegative matrix factorization (NMF) is a blind source separation (BSS) method often used in hyperspectral unmixing. However, it tends to converge to a local optimum. To overcome this limitation, we present a simple, but effective endmember initialization scheme for NMF, which is realized [...] Read more.
Nonnegative matrix factorization (NMF) is a blind source separation (BSS) method often used in hyperspectral unmixing. However, it tends to converge to a local optimum. To overcome this limitation, we present a simple, but effective endmember initialization scheme for NMF, which is realized by improving initial values through the application of the automatic target generation process (ATGP) algorithm. The initial spectra and abundances of target endmembers are first obtained using the ATGP algorithm and nonnegative least squares (NNLS) method, respectively. The preliminary results are then optimized through iterative application of NMF. To validate the applicability and effectiveness of the proposed method, we analyzed the improvement of NMF by the ATGP algorithm, using the synthetic hyperspectral data and real hyperspectral images. The results from the proposed method are compared with those of the vertex component analysis (VCA)-NMF algorithm, which uses the VCA algorithm to perform initialization for NMF, the minimum volume constrained NMF (MVC-NMF) algorithm, the traditional two-step VCA-fully-constrained least squares (FCLS) algorithm, which uses the VCA to extract the endmember matrix, and the FCLS algorithm to estimate the abundance matrix. The comparison results prove that proper endmember initialization can help the NMF algorithm yield better estimation results. Through the optimization of target endmembers’ initial values, the proposed ATGP-NMF algorithm can consistently produce good results at a lower computational cost, especially in the case of a real hyperspectral image for which pure pixels do not exist and there is little prior knowledge. With its high applicability and effectiveness, the ATGP-NMF algorithm has a great potential to solve hyperspectral unmixing problems. Full article
Show Figures

Figure 1

Back to TopTop