Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Liupao tea polysaccharides

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 5739 KiB  
Article
Structural Characterization and In Vitro Antioxidant, Hypoglycemic and Hypolipemic Activities of a Natural Polysaccharide from Liupao Tea
by Lu Wei, Li Huang, Lijuan Du, Qinju Sun, Can Chen, Jie Tang, Jianwen Teng and Baoyao Wei
Foods 2023, 12(11), 2226; https://doi.org/10.3390/foods12112226 - 31 May 2023
Cited by 20 | Viewed by 2700
Abstract
This study extracted and purified a natural polysaccharide (TPS-5) that has a molecular weight of 48.289 kDa from Liupao tea, a typical dark tea with many benefits to human health. TPS-5 was characterized as a pectin-type acidic polysaccharide. It has a backbone composed [...] Read more.
This study extracted and purified a natural polysaccharide (TPS-5) that has a molecular weight of 48.289 kDa from Liupao tea, a typical dark tea with many benefits to human health. TPS-5 was characterized as a pectin-type acidic polysaccharide. It has a backbone composed of → 2,4)- α- L-Rhap-(1) → 4)- α- D-GalAp-(1) →, with a branch composed of → 5)- α- L-Ara-(1 → 5,3)- α- L-Ara-(1 → 3)- β- D-Gal-(1 → 3,6)- β- D-Galp-(1) →. The in vitro biological activity evaluation illustrated that TPS-5 has free radical scavenging, ferric-ion-reducing, digestive enzyme inhibitory, and bile-salt-binding abilities. These results suggest that TPS-5 from Liupao tea has potential applications in functional foods or medicinal products. Full article
(This article belongs to the Section Drinks and Liquid Nutrition)
Show Figures

Graphical abstract

18 pages, 5794 KiB  
Article
Two Polysaccharides from Liupao Tea Exert Beneficial Effects in Simulated Digestion and Fermentation Model In Vitro
by Siqi Qiu, Li Huang, Ning Xia, Jianwen Teng, Baoyao Wei, Xiaoshan Lin and Muhammad Rafiullah Khan
Foods 2022, 11(19), 2958; https://doi.org/10.3390/foods11192958 - 21 Sep 2022
Cited by 14 | Viewed by 2439
Abstract
Liupao tea is an important dark tea, but few studies on purified Liupao tea polysaccharide (TPS) are reported in the literature. In this study, two TPSs, named TPS2 and TPS5, with molecular weights of 70.5 and 133.9 kDa, respectively, were purified from Liupao [...] Read more.
Liupao tea is an important dark tea, but few studies on purified Liupao tea polysaccharide (TPS) are reported in the literature. In this study, two TPSs, named TPS2 and TPS5, with molecular weights of 70.5 and 133.9 kDa, respectively, were purified from Liupao tea. TPS2 contained total sugar content (53.73% ± 1.55%) and uronic acid content (35.18% ± 0.96%), while TPS5 was made up of total sugar (51.71% ± 1.1%), uronic acid (40.95% ± 3.12%), polyphenols (0.43% ± 0.03%), and proteins (0.11% ± 0.07%). TPS2 and TPS5 were composed of Man, Rha, GlcA, Glc, Gal, and Ara in the molar ratios of 0.12:0.69:0.20:0.088:1.60:0.37 and 0.090:0.36:0.42:0.07:1.10:0.16, respectively. The effects of TPS2 and TPS5 on digestion and regulation of gut microbiota in hyperlipidemic rats were compared. In simulated digestion, TPS5 was degraded and had good antioxidant effect, whereas TPS2 was not affected. The bile acids binding capacities of TPS2 and TPS5 were 42.79% ± 1.56% and 33.78% ± 0.45%, respectively. During in vitro fermentation, TPS2 could more effectively reduce pH, promote the production of acetic acid and propionic acid, and reduce the ratio of Firmicutes to Bacteroidetes. TPS5 could more effectively promote the production of butyric acid and increase the abundance of genus Bacteroides. Results indicate that polysaccharides without polyphenols and proteins have better antidigestibility and bile acid binding. Meanwhile, polysaccharides with polyphenols and proteins have a better antioxidant property. Both have different effects on the gut microbiota. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Graphical abstract

Back to TopTop