Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = Lie group thermodynamics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
57 pages, 10943 KiB  
Review
Jean-Marie Souriau’s Symplectic Foliation Model of Sadi Carnot’s Thermodynamics
by Frédéric Barbaresco
Entropy 2025, 27(5), 509; https://doi.org/10.3390/e27050509 - 9 May 2025
Viewed by 906
Abstract
The explanation of thermodynamics through geometric models was initiated by seminal figures such as Carnot, Gibbs, Duhem, Reeb, and Carathéodory. Only recently, however, has the symplectic foliation model, introduced within the domain of geometric statistical mechanics, provided a geometric definition of entropy as [...] Read more.
The explanation of thermodynamics through geometric models was initiated by seminal figures such as Carnot, Gibbs, Duhem, Reeb, and Carathéodory. Only recently, however, has the symplectic foliation model, introduced within the domain of geometric statistical mechanics, provided a geometric definition of entropy as an invariant Casimir function on symplectic leaves—specifically, the coadjoint orbits of the Lie group acting on the system, where these orbits are interpreted as level sets of entropy. We present a symplectic foliation interpretation of thermodynamics, based on Jean-Marie Souriau’s Lie group thermodynamics. This model offers a Lie algebra cohomological characterization of entropy, viewed as an invariant Casimir function in the coadjoint representation. The dual space of the Lie algebra is foliated into coadjoint orbits, which are identified with the level sets of entropy. Within the framework of thermodynamics, dynamics on symplectic leaves—described by the Poisson bracket—are associated with non-dissipative phenomena. Conversely, on the transversal Riemannian foliation (defined by the level sets of energy), the dynamics, characterized by the metric flow bracket, induce entropy production as transitions occur from one symplectic leaf to another. Full article
Show Figures

Figure 1

36 pages, 3506 KiB  
Article
Symplectic Foliation Structures of Non-Equilibrium Thermodynamics as Dissipation Model: Application to Metriplectic Nonlinear Lindblad Quantum Master Equation
by Frédéric Barbaresco
Entropy 2022, 24(11), 1626; https://doi.org/10.3390/e24111626 - 9 Nov 2022
Cited by 6 | Viewed by 3255
Abstract
The idea of a canonical ensemble from Gibbs has been extended by Jean-Marie Souriau for a symplectic manifold where a Lie group has a Hamiltonian action. A novel symplectic thermodynamics and information geometry known as “Lie group thermodynamics” then explains foliation structures of [...] Read more.
The idea of a canonical ensemble from Gibbs has been extended by Jean-Marie Souriau for a symplectic manifold where a Lie group has a Hamiltonian action. A novel symplectic thermodynamics and information geometry known as “Lie group thermodynamics” then explains foliation structures of thermodynamics. We then infer a geometric structure for heat equation from this archetypal model, and we have discovered a pure geometric structure of entropy, which characterizes entropy in coadjoint representation as an invariant Casimir function. The coadjoint orbits form the level sets on the entropy. By using the KKS 2-form in the affine case via Souriau’s cocycle, the method also enables the Fisher metric from information geometry for Lie groups. The fact that transverse dynamics to these symplectic leaves is dissipative, whilst dynamics along these symplectic leaves characterize non-dissipative phenomenon, can be used to interpret this Lie group thermodynamics within the context of an open system out of thermodynamics equilibrium. In the following section, we will discuss the dissipative symplectic model of heat and information through the Poisson transverse structure to the symplectic leaf of coadjoint orbits, which is based on the metriplectic bracket, which guarantees conservation of energy and non-decrease of entropy. Baptiste Coquinot recently developed a new foundation theory for dissipative brackets by taking a broad perspective from non-equilibrium thermodynamics. He did this by first considering more natural variables for building the bracket used in metriplectic flow and then by presenting a methodical approach to the development of the theory. By deriving a generic dissipative bracket from fundamental thermodynamic first principles, Baptiste Coquinot demonstrates that brackets for the dissipative part are entirely natural, just as Poisson brackets for the non-dissipative part are canonical for Hamiltonian dynamics. We shall investigate how the theory of dissipative brackets introduced by Paul Dirac for limited Hamiltonian systems relates to transverse structure. We shall investigate an alternative method to the metriplectic method based on Michel Saint Germain’s PhD research on the transverse Poisson structure. We will examine an alternative method to the metriplectic method based on the transverse Poisson structure, which Michel Saint-Germain studied for his PhD and was motivated by the key works of Fokko du Cloux. In continuation of Saint-Germain’s works, Hervé Sabourin highlights the, for transverse Poisson structures, polynomial nature to nilpotent adjoint orbits and demonstrated that the Casimir functions of the transverse Poisson structure that result from restriction to the Lie–Poisson structure transverse slice are Casimir functions independent of the transverse Poisson structure. He also demonstrated that, on the transverse slice, two polynomial Poisson structures to the symplectic leaf appear that have Casimir functions. The dissipative equation introduced by Lindblad, from the Hamiltonian Liouville equation operating on the quantum density matrix, will be applied to illustrate these previous models. For the Lindblad operator, the dissipative component has been described as the relative entropy gradient and the maximum entropy principle by Öttinger. It has been observed then that the Lindblad equation is a linear approximation of the metriplectic equation. Full article
(This article belongs to the Special Issue Geometric Structure of Thermodynamics: Theory and Applications)
Show Figures

Figure 1

12 pages, 285 KiB  
Article
Thermofractals, Non-Additive Entropy, and q-Calculus
by Airton Deppman
Physics 2021, 3(2), 290-301; https://doi.org/10.3390/physics3020021 - 4 May 2021
Cited by 10 | Viewed by 3651
Abstract
Non-additive entropy is obtained through the thermodynamic description of a system with a fractal structure in its energy-momentum space, called a thermofractal. The entropic parameter, q, is determined in terms of the fractal structure parameters. The characteristics of the thermofractals are determined [...] Read more.
Non-additive entropy is obtained through the thermodynamic description of a system with a fractal structure in its energy-momentum space, called a thermofractal. The entropic parameter, q, is determined in terms of the fractal structure parameters. The characteristics of the thermofractals are determined by two parameters associated with the number of degrees of freedom of the fractal structure and the scale. The parameter q, of non-extensive thermodynamics, has a physical meaning related to the number of degrees of freedom of the thermofractal. The two types of thermofractals are distinguished by the value of q>1 or q<1. Studying the group of transformations of the fractal system, we identify three different classes of transformations and their mathematical expressions. For one class of transformations of thermofractals, the group is isomorphic with q-calculus. Another class of transformations led to new mathematical expressions that extended the deformed q-algebra. Finally, we comment regarding the applications of the results obtained here for different areas such as QCD and scale-free networks. Full article
(This article belongs to the Section Statistical Physics and Nonlinear Phenomena)
26 pages, 425 KiB  
Review
Geometric Aspects of the Isentropic Liquid Dynamics and Vorticity Invariants
by Alexander A. Balinsky, Denis Blackmore, Radosław Kycia and Anatolij K. Prykarpatski
Entropy 2020, 22(11), 1241; https://doi.org/10.3390/e22111241 - 31 Oct 2020
Cited by 2 | Viewed by 2422
Abstract
We review a modern differential geometric description of fluid isentropic motion and features of it including diffeomorphism group structure, modelling the related dynamics, as well as its compatibility with the quasi-stationary thermodynamical constraints. We analyze the adiabatic liquid dynamics, within which, following the [...] Read more.
We review a modern differential geometric description of fluid isentropic motion and features of it including diffeomorphism group structure, modelling the related dynamics, as well as its compatibility with the quasi-stationary thermodynamical constraints. We analyze the adiabatic liquid dynamics, within which, following the general approach, the nature of the related Poissonian structure on the fluid motion phase space as a semidirect Banach groups product, and a natural reduction of the canonical symplectic structure on its cotangent space to the classical Lie-Poisson bracket on the adjoint space to the corresponding semidirect Lie algebras product are explained in detail. We also present a modification of the Hamiltonian analysis in case of a flow governed by isothermal liquid dynamics. We study the differential-geometric structure of isentropic magneto-hydrodynamic superfluid phase space and its related motion within the Hamiltonian analysis and related invariant theory. In particular, we construct an infinite hierarchy of different kinds of integral magneto-hydrodynamic invariants, generalizing those previously constructed in the literature, and analyzing their differential-geometric origins. A charged liquid dynamics on the phase space invariant with respect to an abelian gauge group transformation is also investigated, and some generalizations of the canonical Lie-Poisson type bracket is presented. Full article
(This article belongs to the Special Issue Review Papers for Entropy)
64 pages, 4369 KiB  
Article
Lie Group Statistics and Lie Group Machine Learning Based on Souriau Lie Groups Thermodynamics & Koszul-Souriau-Fisher Metric: New Entropy Definition as Generalized Casimir Invariant Function in Coadjoint Representation
by Frédéric Barbaresco
Entropy 2020, 22(6), 642; https://doi.org/10.3390/e22060642 - 9 Jun 2020
Cited by 22 | Viewed by 8003
Abstract
In 1969, Jean-Marie Souriau introduced a “Lie Groups Thermodynamics” in Statistical Mechanics in the framework of Geometric Mechanics. This Souriau’s model considers the statistical mechanics of dynamic systems in their “space of evolution” associated to a homogeneous symplectic manifold by a Lagrange 2-form, [...] Read more.
In 1969, Jean-Marie Souriau introduced a “Lie Groups Thermodynamics” in Statistical Mechanics in the framework of Geometric Mechanics. This Souriau’s model considers the statistical mechanics of dynamic systems in their “space of evolution” associated to a homogeneous symplectic manifold by a Lagrange 2-form, and defines in case of non null cohomology (non equivariance of the coadjoint action on the moment map with appearance of an additional cocyle) a Gibbs density (of maximum entropy) that is covariant under the action of dynamic groups of physics (e.g., Galileo’s group in classical physics). Souriau Lie Group Thermodynamics was also addressed 30 years after Souriau by R.F. Streater in the framework of Quantum Physics by Information Geometry for some Lie algebras, but only in the case of null cohomology. Souriau method could then be applied on Lie groups to define a covariant maximum entropy density by Kirillov representation theory. We will illustrate this method for homogeneous Siegel domains and more especially for Poincaré unit disk by considering SU(1,1) group coadjoint orbit and by using its Souriau’s moment map. For this case, the coadjoint action on moment map is equivariant. For non-null cohomology, we give the case of Lie group SE(2). Finally, we will propose a new geometric definition of Entropy that could be built as a generalized Casimir invariant function in coadjoint representation, and Massieu characteristic function, dual of Entropy by Legendre transform, as a generalized Casimir invariant function in adjoint representation, where Souriau cocycle is a measure of the lack of equivariance of the moment mapping. Full article
Show Figures

Figure 1

6 pages, 533 KiB  
Editorial
Joseph Fourier 250th Birthday: Modern Fourier Analysis and Fourier Heat Equation in Information Sciences for the XXIst Century
by Frédéric Barbaresco and Jean-Pierre Gazeau
Entropy 2019, 21(3), 250; https://doi.org/10.3390/e21030250 - 6 Mar 2019
Cited by 2 | Viewed by 4344
Abstract
For the 250th birthday of Joseph Fourier, born in 1768 at Auxerre in France, this MDPI special issue will explore modern topics related to Fourier analysis and Fourier Heat Equation. Fourier analysis, named after Joseph Fourier, addresses classically commutative harmonic analysis. The modern [...] Read more.
For the 250th birthday of Joseph Fourier, born in 1768 at Auxerre in France, this MDPI special issue will explore modern topics related to Fourier analysis and Fourier Heat Equation. Fourier analysis, named after Joseph Fourier, addresses classically commutative harmonic analysis. The modern development of Fourier analysis during XXth century has explored the generalization of Fourier and Fourier-Plancherel formula for non-commutative harmonic analysis, applied to locally compact non-Abelian groups. In parallel, the theory of coherent states and wavelets has been generalized over Lie groups (by associating coherent states to group representations that are square integrable over a homogeneous space). The name of Joseph Fourier is also inseparable from the study of mathematics of heat. Modern research on Heat equation explores geometric extension of classical diffusion equation on Riemannian, sub-Riemannian manifolds, and Lie groups. The heat equation for a general volume form that not necessarily coincides with the Riemannian one is useful in sub-Riemannian geometry, where a canonical volume only exists in certain cases. A new geometric theory of heat is emerging by applying geometric mechanics tools extended for statistical mechanics, for example, the Lie groups thermodynamics. Full article
Show Figures

Figure 1

60 pages, 6291 KiB  
Article
Higher Order Geometric Theory of Information and Heat Based on Poly-Symplectic Geometry of Souriau Lie Groups Thermodynamics and Their Contextures: The Bedrock for Lie Group Machine Learning
by Frédéric Barbaresco
Entropy 2018, 20(11), 840; https://doi.org/10.3390/e20110840 - 2 Nov 2018
Cited by 12 | Viewed by 5765
Abstract
We introduce poly-symplectic extension of Souriau Lie groups thermodynamics based on higher-order model of statistical physics introduced by Ingarden. This extended model could be used for small data analytics and machine learning on Lie groups. Souriau geometric theory of heat is well adapted [...] Read more.
We introduce poly-symplectic extension of Souriau Lie groups thermodynamics based on higher-order model of statistical physics introduced by Ingarden. This extended model could be used for small data analytics and machine learning on Lie groups. Souriau geometric theory of heat is well adapted to describe density of probability (maximum entropy Gibbs density) of data living on groups or on homogeneous manifolds. For small data analytics (rarified gases, sparse statistical surveys, …), the density of maximum entropy should consider higher order moments constraints (Gibbs density is not only defined by first moment but fluctuations request 2nd order and higher moments) as introduced by Ingarden. We use a poly-sympletic model introduced by Christian Günther, replacing the symplectic form by a vector-valued form. The poly-symplectic approach generalizes the Noether theorem, the existence of moment mappings, the Lie algebra structure of the space of currents, the (non-)equivariant cohomology and the classification of G-homogeneous systems. The formalism is covariant, i.e., no special coordinates or coordinate systems on the parameter space are used to construct the Hamiltonian equations. We underline the contextures of these models, and the process to build these generic structures. We also introduce a more synthetic Koszul definition of Fisher Metric, based on the Souriau model, that we name Souriau-Fisher metric. This Lie groups thermodynamics is the bedrock for Lie group machine learning providing a full covariant maximum entropy Gibbs density based on representation theory (symplectic structure of coadjoint orbits for Souriau non-equivariant model associated to a class of co-homology). Full article
Show Figures

Figure 1

14 pages, 1572 KiB  
Review
Symmetries, Information and Monster Groups before and after the Big Bang
by Arturo Tozzi and James F. Peters
Information 2016, 7(4), 73; https://doi.org/10.3390/info7040073 - 21 Dec 2016
Cited by 3 | Viewed by 8159
Abstract
The Monster group, the biggest of the sporadic groups, is equipped with the highest known number of dimensions and symmetries. Taking into account variants of the Borsuk–Ulam theorem and a novel topological approach cast in a physical fashion that has the potential to [...] Read more.
The Monster group, the biggest of the sporadic groups, is equipped with the highest known number of dimensions and symmetries. Taking into account variants of the Borsuk–Ulam theorem and a novel topological approach cast in a physical fashion that has the potential to be operationalized, the universe can be conceived as a lower-dimensional manifold encompassed in the Monster group. Our universe might arise from spontaneous dimension decrease and symmetry breaking that occur inside the very structure of the Monster Module. We elucidate how the energetic loss caused by projection from higher to lower dimensions and by the Monster group’s non-abelian features is correlated with the present-day asymmetry in the thermodynamic arrow. By linking the Monster Module to its theoretical physical counterparts, it is then possible to calculate its enthalpy and Lie group trajectories. Our approach also reveals how a symmetry break might lead to a universe based on multi-dimensional string theories and CFT/AdS (anti-de Sitter/conformal field theory) correspondence. Full article
(This article belongs to the Special Issue Symmetry and Information)
Show Figures

Figure 1

72 pages, 7800 KiB  
Article
Geometric Theory of Heat from Souriau Lie Groups Thermodynamics and Koszul Hessian Geometry: Applications in Information Geometry for Exponential Families
by Frédéric Barbaresco
Entropy 2016, 18(11), 386; https://doi.org/10.3390/e18110386 - 4 Nov 2016
Cited by 28 | Viewed by 11070
Abstract
We introduce the symplectic structure of information geometry based on Souriau’s Lie group thermodynamics model, with a covariant definition of Gibbs equilibrium via invariances through co-adjoint action of a group on its moment space, defining physical observables like energy, heat, and moment as [...] Read more.
We introduce the symplectic structure of information geometry based on Souriau’s Lie group thermodynamics model, with a covariant definition of Gibbs equilibrium via invariances through co-adjoint action of a group on its moment space, defining physical observables like energy, heat, and moment as pure geometrical objects. Using geometric Planck temperature of Souriau model and symplectic cocycle notion, the Fisher metric is identified as a Souriau geometric heat capacity. The Souriau model is based on affine representation of Lie group and Lie algebra that we compare with Koszul works on G/K homogeneous space and bijective correspondence between the set of G-invariant flat connections on G/K and the set of affine representations of the Lie algebra of G. In the framework of Lie group thermodynamics, an Euler-Poincaré equation is elaborated with respect to thermodynamic variables, and a new variational principal for thermodynamics is built through an invariant Poincaré-Cartan-Souriau integral. The Souriau-Fisher metric is linked to KKS (Kostant–Kirillov–Souriau) 2-form that associates a canonical homogeneous symplectic manifold to the co-adjoint orbits. We apply this model in the framework of information geometry for the action of an affine group for exponential families, and provide some illustrations of use cases for multivariate gaussian densities. Information geometry is presented in the context of the seminal work of Fréchet and his Clairaut-Legendre equation. The Souriau model of statistical physics is validated as compatible with the Balian gauge model of thermodynamics. We recall the precursor work of Casalis on affine group invariance for natural exponential families. Full article
(This article belongs to the Special Issue Differential Geometrical Theory of Statistics)
Show Figures

Figure 1

46 pages, 450 KiB  
Article
From Tools in Symplectic and Poisson Geometry to J.-M. Souriau’s Theories of Statistical Mechanics and Thermodynamics
by Charles-Michel Marle
Entropy 2016, 18(10), 370; https://doi.org/10.3390/e18100370 - 19 Oct 2016
Cited by 35 | Viewed by 6359
Abstract
I present in this paper some tools in symplectic and Poisson geometry in view of their applications in geometric mechanics and mathematical physics. After a short discussion of the Lagrangian an Hamiltonian formalisms, including the use of symmetry groups, and a presentation of [...] Read more.
I present in this paper some tools in symplectic and Poisson geometry in view of their applications in geometric mechanics and mathematical physics. After a short discussion of the Lagrangian an Hamiltonian formalisms, including the use of symmetry groups, and a presentation of the Tulczyjew’s isomorphisms (which explain some aspects of the relations between these formalisms), I explain the concept of manifold of motions of a mechanical system and its use, due to J.-M. Souriau, in statistical mechanics and thermodynamics. The generalization of the notion of thermodynamic equilibrium in which the one-dimensional group of time translations is replaced by a multi-dimensional, maybe non-commutative Lie group, is fully discussed and examples of applications in physics are given. Full article
(This article belongs to the Special Issue Differential Geometrical Theory of Statistics)
15 pages, 293 KiB  
Article
Link between Lie Group Statistical Mechanics and Thermodynamics of Continua
by Géry De Saxcé
Entropy 2016, 18(7), 254; https://doi.org/10.3390/e18070254 - 12 Jul 2016
Cited by 13 | Viewed by 5250
Abstract
In this work, we consider the value of the momentum map of the symplectic mechanics as an affine tensor called momentum tensor. From this point of view, we analyze the underlying geometric structure of the theories of Lie group statistical mechanics and relativistic [...] Read more.
In this work, we consider the value of the momentum map of the symplectic mechanics as an affine tensor called momentum tensor. From this point of view, we analyze the underlying geometric structure of the theories of Lie group statistical mechanics and relativistic thermodynamics of continua, formulated by Souriau independently of each other. We bridge the gap between them in the classical Galilean context. These geometric structures of the thermodynamics are rich and we think they might be a source of inspiration for the geometric theory of information based on the concept of entropy. Full article
(This article belongs to the Special Issue Differential Geometrical Theory of Statistics)
45 pages, 2994 KiB  
Article
Koszul Information Geometry and Souriau Geometric Temperature/Capacity of Lie Group Thermodynamics
by Frédéric Barbaresco
Entropy 2014, 16(8), 4521-4565; https://doi.org/10.3390/e16084521 - 12 Aug 2014
Cited by 44 | Viewed by 10208
Abstract
The François Massieu 1869 idea to derive some mechanical and thermal properties of physical systems from “Characteristic Functions”, was developed by Gibbs and Duhem in thermodynamics with the concept of potentials, and introduced by Poincaré in probability. This paper deals with generalization of [...] Read more.
The François Massieu 1869 idea to derive some mechanical and thermal properties of physical systems from “Characteristic Functions”, was developed by Gibbs and Duhem in thermodynamics with the concept of potentials, and introduced by Poincaré in probability. This paper deals with generalization of this Characteristic Function concept by Jean-Louis Koszul in Mathematics and by Jean-Marie Souriau in Statistical Physics. The Koszul-Vinberg Characteristic Function (KVCF) on convex cones will be presented as cornerstone of “Information Geometry” theory, defining Koszul Entropy as Legendre transform of minus the logarithm of KVCF, and Fisher Information Metrics as hessian of these dual functions, invariant by their automorphisms. In parallel, Souriau has extended the Characteristic Function in Statistical Physics looking for other kinds of invariances through co-adjoint action of a group on its momentum space, defining physical observables like energy, heat and momentum as pure geometrical objects. In covariant Souriau model, Gibbs equilibriums states are indexed by a geometric parameter, the Geometric (Planck) Temperature, with values in the Lie algebra of the dynamical Galileo/Poincaré groups, interpreted as a space-time vector, giving to the metric tensor a null Lie derivative. Fisher Information metric appears as the opposite of the derivative of Mean “Moment map” by geometric temperature, equivalent to a Geometric Capacity or Specific Heat. We will synthetize the analogies between both Koszul and Souriau models, and will reduce their definitions to the exclusive Cartan “Inner Product”. Interpreting Legendre transform as Fourier transform in (Min,+) algebra, we conclude with a definition of Entropy given by a relation mixing Fourier/Laplace transforms: Entropy = (minus) Fourier(Min,+) o Log o Laplace(+,X). Full article
(This article belongs to the Special Issue Information, Entropy and Their Geometric Structures)
Show Figures

Back to TopTop