Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Lenarviricota

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1995 KiB  
Article
The Virome of Cocoa Fermentation-Associated Microorganisms
by João Pedro Nunes Santos, Gabriel Victor Pina Rodrigues, Lucas Yago Melo Ferreira, Gabriel Pereira Monteiro, Paula Luize Camargo Fonseca, Ícaro Santos Lopes, Brenno Santos Florêncio, Aijalon Brito da Silva Junior, Paulo Eduardo Ambrósio, Carlos Priminho Pirovani and Eric Roberto Guimarães Rocha Aguiar
Viruses 2024, 16(8), 1226; https://doi.org/10.3390/v16081226 - 31 Jul 2024
Cited by 1 | Viewed by 1796
Abstract
Theobroma cacao plantations are of significant economic importance worldwide, primarily for chocolate production. During the harvest and processing of cocoa beans, they are subjected to fermentation either by microorganisms present in the environment (spontaneous fermentation) or the addition of starter cultures, with different [...] Read more.
Theobroma cacao plantations are of significant economic importance worldwide, primarily for chocolate production. During the harvest and processing of cocoa beans, they are subjected to fermentation either by microorganisms present in the environment (spontaneous fermentation) or the addition of starter cultures, with different strains directly contributing distinct flavor and color characteristics to the beans. In addition to fungi and bacteria, viruses are ubiquitous and can affect the quality of the fermentation process by infecting fermenting organisms, destabilizing microbial diversity, and consequently affecting fermentation quality. Therefore, in this study, we explored publicly available metatranscriptomic libraries of cocoa bean fermentation in Limon Province, Costa Rica, looking for viruses associated with fermenting microorganisms. Libraries were derived from the same sample at different time points: 7, 20, and 68 h of fermentation, corresponding to yeast- and lactic acid bacteria-driven phases. Using a comprehensive pipeline, we identified 68 viral sequences that could be assigned to 62 new viral species and 6 known viruses distributed among at least nine families, with particular abundance of elements from the Lenarviricota phylum. Interestingly, 44 of these sequences were specifically associated with ssRNA phages (Fiersviridae) and mostly fungi-infecting viral families (Botourmiaviridae, Narnaviridae, and Mitoviridae). Of note, viruses from those families show a complex evolutionary relationship, transitioning from infecting bacteria to infecting fungi. We also identified 10 and 3 viruses classified within the Totiviridae and Nodaviridae families, respectively. The quantification of the virus-derived RNAs shows a general pattern of decline, similar to the dynamic profile of some microorganism genera during the fermentation process. Unexpectedly, we identified narnavirus-related elements that showed similarity to segmented viral species. By exploring the molecular characteristics of these viral sequences and applying Hidden Markov Models, we were capable of associating these additional segments with a specific taxon. In summary, our study elucidates the complex virome associated with the microbial consortia engaged in cocoa bean fermentation that could contribute to organism/strain selection, altering metabolite production and, consequently, affecting the sensory characteristics of cocoa beans. Full article
(This article belongs to the Section Viruses of Plants, Fungi and Protozoa)
Show Figures

Figure 1

25 pages, 4186 KiB  
Article
The Mycovirome in a Worldwide Collection of the Brown Rot Fungus Monilinia fructicola
by Rita Milvia De Miccolis Angelini, Celeste Raguseo, Caterina Rotolo, Donato Gerin, Francesco Faretra and Stefania Pollastro
J. Fungi 2022, 8(5), 481; https://doi.org/10.3390/jof8050481 - 6 May 2022
Cited by 12 | Viewed by 3263
Abstract
The fungus Monilinia fructicola is responsible for brown rot on stone and pome fruit and causes heavy yield losses both pre- and post-harvest. Several mycoviruses are known to infect fungal plant pathogens. In this study, a metagenomic approach was applied to obtain a [...] Read more.
The fungus Monilinia fructicola is responsible for brown rot on stone and pome fruit and causes heavy yield losses both pre- and post-harvest. Several mycoviruses are known to infect fungal plant pathogens. In this study, a metagenomic approach was applied to obtain a comprehensive characterization of the mycovirome in a worldwide collection of 58 M. fructicola strains. Deep sequencing of double-stranded (ds)RNA extracts revealed a great abundance and variety of mycoviruses. A total of 32 phylogenetically distinct positive-sense (+) single-stranded (ss)RNA viruses were identified. They included twelve mitoviruses, one in the proposed family Splipalmiviridae, and twelve botourmiaviruses (phylum Lenarviricota), eleven of which were novel viral species; two hypoviruses, three in the proposed family Fusariviridae, and one barnavirus (phylum Pisuviricota); as well as one novel beny-like virus (phylum Kitrinoviricota), the first one identified in Ascomycetes. A partial sequence of a new putative ssDNA mycovirus related to viruses within the Parvoviridae family was detected in a M. fructicola isolate from Serbia. The availability of genomic sequences of mycoviruses will serve as a solid basis for further research aimed at deepening the knowledge on virus–host and virus–virus interactions and to explore their potential as biocontrol agents against brown rot disease. Full article
(This article belongs to the Section Fungal Evolution, Biodiversity and Systematics)
Show Figures

Figure 1

Back to TopTop