Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = Ledantevirus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 950 KiB  
Article
Potential of Viruses as Environmental Etiological Factors for Non-Syndromic Orofacial Clefts
by Thiago S. Messias, Kaique C. P. Silva, Thiago C. Silva and Simone Soares
Viruses 2024, 16(4), 511; https://doi.org/10.3390/v16040511 - 27 Mar 2024
Cited by 2 | Viewed by 1739
Abstract
In this study, we analyzed the potential of viral infections in the species Homo sapiens as environmental causes of orofacial clefts (OFCs). A scoring system was adapted for qualitatively assessing the potential of viruses to cause cleft lip and/or palate (CL/P). This assessment [...] Read more.
In this study, we analyzed the potential of viral infections in the species Homo sapiens as environmental causes of orofacial clefts (OFCs). A scoring system was adapted for qualitatively assessing the potential of viruses to cause cleft lip and/or palate (CL/P). This assessment considered factors such as information from the literature, nucleotide and amino acid similarities, and the presence of Endogenous Viral Elements (EVEs). The analysis involved various algorithm packages within Basic Local Alignment Search Tool 2.13.0 software and databases from the National Center for Biotechnology Information and the International Committee on Taxonomy of Viruses. Twenty significant viral species using different biosynthesis strategies were identified: Human coronavirus NL63, Rio Negro virus, Alphatorquevirus homin9, Brisavirus, Cosavirus B, Torque teno mini virus 4, Bocaparvovirus primate2, Human coronavirus HKU1, Monkeypox virus, Mammarenavirus machupoense, Volepox virus, Souris mammarenavirus, Gammapapillomavirus 7, Betainfluenzavirus influenzae, Lymphocytic choriomeningitis mammarenavirus, Ledantevirus kern, Gammainfluenzavirus influenzae, Betapolyomavirus hominis, Vesiculovirus perinet, and Cytomegalovirus humanbeta5. The evident viral etiological potential in relation to CL/P varies depending on the Baltimore class to which the viral species belongs. Given the multifactorial nature of CL/P, this relationship appears to be dynamic. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

16 pages, 2620 KiB  
Article
Genetic Characterization of Human Rabies Vaccine Strain in Japan and Rabies Viruses Related to Vaccine Development from 1940s to 1980s
by Madoka Horiya, Guillermo Posadas-Herrera, Mutsuyo Takayama-Ito, Yukie Yamaguchi, Itoe Iizuka-Shiota, Hirofumi Kato, Aikou Okamoto, Masayuki Saijo and Chang-Kweng Lim
Viruses 2022, 14(10), 2152; https://doi.org/10.3390/v14102152 - 29 Sep 2022
Cited by 5 | Viewed by 3512
Abstract
The rabies virus is widely distributed and vaccines are an important strategy to prevent its spread. The whole-genome sequences of rabies strains in relation to vaccine development provide essential information to maintain vaccine quality and develop new vaccines. However, the genetic characteristics of [...] Read more.
The rabies virus is widely distributed and vaccines are an important strategy to prevent its spread. The whole-genome sequences of rabies strains in relation to vaccine development provide essential information to maintain vaccine quality and develop new vaccines. However, the genetic characteristics of the purified chick embryo cell culture rabies vaccine, KM Biologics (PCECV-KMB), developed in Japan in the 1970s, have not been explored. In this study, we conducted a genome-wide analysis of the open reading frame regions of rabies strains discovered from the 1940s–1980s and used to develop chick embryo cell-adapted HEP-Flury small plaque-forming (CEF-S) strain, which is a vaccine strain of PCECV-KMB. The genetic characteristic of CEF-S, developed by acclimation of the HEP-Flury-NIID strain to one-day eggs and subsequently to chick embryo cells, were confirmed by comparing the genome identity and revealing the nine amino acid mutations between CEF-S and HEP-Flury-NIID. The efficacy of PCECV-KMB was evaluated using attack strains isolated in Thailand in the 1960s–1970s during vaccine development. Phylogenetic analyses of the attack strains classified them in the same Asian clade as the 2000s imported cases from the Philippines to Japan, suggesting that PCECV-KMB is adequate for preventing the spread of the current rabies virus. Full article
(This article belongs to the Special Issue Advances in Rabies Research)
Show Figures

Figure 1

22 pages, 2787 KiB  
Article
Characterization of Novel Rhabdoviruses in Chinese Bats
by Dong-Sheng Luo, Bei Li, Xu-Rui Shen, Ren-Di Jiang, Yan Zhu, Jia Wu, Yi Fan, Hervé Bourhy, Ben Hu, Xing-Yi Ge, Zheng-Li Shi and Laurent Dacheux
Viruses 2021, 13(1), 64; https://doi.org/10.3390/v13010064 - 5 Jan 2021
Cited by 17 | Viewed by 6041
Abstract
Bats, the second largest order of mammals worldwide, harbor specific characteristics such as sustaining flight, a special immune system, unique habits, and ecological niches. In addition, they are the natural reservoirs of a variety of emerging or re-emerging zoonotic pathogens. Rhabdoviridae is one [...] Read more.
Bats, the second largest order of mammals worldwide, harbor specific characteristics such as sustaining flight, a special immune system, unique habits, and ecological niches. In addition, they are the natural reservoirs of a variety of emerging or re-emerging zoonotic pathogens. Rhabdoviridae is one of the most diverse families of RNA viruses, which consists of 20 ecologically diverse genera, infecting plants, mammals, birds, reptiles, and fish. To date, three bat-related genera are described, named Lyssavirus, Vesiculovirus, and Ledantevirus. However, the prevalence and the distribution of these bat-related rhabdoviruses remain largely unknown, especially in China. To fill this gap, we performed a large molecular retrospective study based on the real-time reverse transcription polymerase chain reaction (RT-qPCR) detection of lyssavirus in bat samples (1044 brain and 3532 saliva samples, from 63 different bat species) originating from 21 provinces of China during 2006–2018. None of them were positive for lyssavirus, but six bat brains (0.6%) of Rhinolophus bat species, originating from Hubei and Hainan provinces, were positive for vesiculoviruses or ledanteviruses. Based on complete genomes, these viruses were phylogenetically classified into three putative new species, tentatively named Yinshui bat virus (YSBV), Taiyi bat virus (TYBV), and Qiongzhong bat virus (QZBV). These results indicate the novel rhabdoviruses circulated in different Chinese bat populations. Full article
(This article belongs to the Special Issue Lyssaviruses and Other Bat Rhabdoviruses)
Show Figures

Figure 1

14 pages, 1416 KiB  
Article
Diversity, Transmission, and Cophylogeny of Ledanteviruses (Rhabdoviridae: Ledantevirus) and Nycteribiid Bat Flies Parasitizing Angolan Soft-Furred Fruit Bats in Bundibugyo District, Uganda
by Andrew J. Bennett, Adrian C. Paskey, Jens H. Kuhn, Kimberly A. Bishop-Lilly and Tony L. Goldberg
Microorganisms 2020, 8(5), 750; https://doi.org/10.3390/microorganisms8050750 - 17 May 2020
Cited by 25 | Viewed by 4100
Abstract
Obligate hematophagous ectoparasitic flies of the superfamily Hippoboscoidea are distributed worldwide, but their role as vectors and reservoirs of viruses remains understudied. We examined hippoboscoid bat flies (family Nycteribiidae) parasitizing Angolan soft-furred fruit bats (Lissonycteris angolensis ruwenzorii) from Bundibugyo District, Uganda. [...] Read more.
Obligate hematophagous ectoparasitic flies of the superfamily Hippoboscoidea are distributed worldwide, but their role as vectors and reservoirs of viruses remains understudied. We examined hippoboscoid bat flies (family Nycteribiidae) parasitizing Angolan soft-furred fruit bats (Lissonycteris angolensis ruwenzorii) from Bundibugyo District, Uganda. Using metagenomic methods, we detected 21 variants of the rhabdovirid genus Ledantevirus, which contains medically important “bat-associated” viruses. These 21 viruses, representing at least two divergent viral lineages, infected 26 bat flies from 8 bats in a single roost. Cophylogenetic analyses of viruses and bat flies resulted in strong evidence of virus-host codivergence, indicating vertical transmission of bat fly ledanteviruses. Examination of oral swabs from bats revealed ledantevirus RNA in the saliva of 1 out of 11 bats, with no evidence of insect genetic material in the mouth of this bat. These data demonstrate that bat flies can harbor diverse ledanteviruses even in a single roost and that the predominant mode of transmission is likely vertical (among bat flies), but that bats can become infected and shed viruses orally. In conclusion, bat flies may serve as ectoparasitic reservoirs of “bat-associated” viruses that only transiently or sporadically infect bats. Full article
(This article belongs to the Section Molecular Microbiology and Immunology)
Show Figures

Figure 1

18 pages, 1929 KiB  
Review
Human Tibroviruses: Commensals or Lethal Pathogens?
by Jens H. Kuhn, Hào Pān, Charles Y. Chiu and Matthew Stremlau
Viruses 2020, 12(3), 252; https://doi.org/10.3390/v12030252 - 25 Feb 2020
Cited by 13 | Viewed by 5550
Abstract
Rhabdoviruses are a large and ecologically diverse family of negative-sense RNA viruses (Mononegavirales: Rhabdoviridae). These viruses are capable of infecting an unexpectedly wide variety of plants, vertebrates, and invertebrates distributed over all human-inhabited continents. However, only a few rhabdoviruses are [...] Read more.
Rhabdoviruses are a large and ecologically diverse family of negative-sense RNA viruses (Mononegavirales: Rhabdoviridae). These viruses are capable of infecting an unexpectedly wide variety of plants, vertebrates, and invertebrates distributed over all human-inhabited continents. However, only a few rhabdoviruses are known to infect humans: a ledantevirus (Le Dantec virus), several lyssaviruses (in particular, rabies virus), and several vesiculoviruses (e.g., Chandipura virus, vesicular stomatitis Indiana virus). Recently, several novel rhabdoviruses have been discovered in the blood of both healthy and severely ill individuals living in Central and Western Africa. These viruses—Bas-Congo virus, Ekpoma virus 1, and Ekpoma virus 2—are members of the little-understood rhabdoviral genus Tibrovirus. Other than the basic genomic architecture, tibroviruses bear little resemblance to well-studied rhabdoviruses such as rabies virus and vesicular stomatitis Indiana virus. These three human tibroviruses are quite divergent from each other, and each of them clusters closely with tibroviruses currently known only from biting midges or healthy cattle. Seroprevalence studies suggest that human tibrovirus infections may be common but are almost entirely unrecognized. The pathogenic potential of this diverse group of viruses remains unknown. Although certain tibroviruses may be benign and well-adapted to humans, others could be newly emerging and produce serious disease. Here, we review the current knowledge of tibroviruses and argue that assessing their impact on human health should be an urgent priority. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

Back to TopTop