Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = LCR mutations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1161 KB  
Article
Preclinical Efficacy of the Estrogen Receptor Degrader Fulvestrant in Combination with RAF/MEK Clamp Avutometinib and FAK Inhibitor in a Low-Grade Serous Ovarian Cancer Animal Model with Acquired Resistance to Chemotherapy and Aromatase Inhibitor
by Cem Demirkiran, Stefania Bellone, Victoria M. Ettorre, Miranda Mansolf, Tobias Max Philipp Hartwich, Blair McNamara, Michelle Greenman, Yang Yang-Hartwich, Elena Ratner, Niccoló G. Santin, Namrata Sethi, Luca Palmieri, Silvia Coma, Jonathan A. Pachter, Sarah Ottum and Alessandro D. Santin
Int. J. Mol. Sci. 2025, 26(18), 8924; https://doi.org/10.3390/ijms26188924 - 13 Sep 2025
Cited by 1 | Viewed by 1175
Abstract
Low-grade-serous ovarian carcinomas (LGSOC) are rare tumors characterized by a high recurrence rate and limited treatment options. Most LGSOC are estrogen receptor (ER)-positive and demonstrate alterations in the RAS/MAPK pathway. Avutometinib is a dual RAF/MEK clamp, whereas defactinib and VS-4718 are focal adhesion [...] Read more.
Low-grade-serous ovarian carcinomas (LGSOC) are rare tumors characterized by a high recurrence rate and limited treatment options. Most LGSOC are estrogen receptor (ER)-positive and demonstrate alterations in the RAS/MAPK pathway. Avutometinib is a dual RAF/MEK clamp, whereas defactinib and VS-4718 are focal adhesion kinase (FAK) inhibitors. Fulvestrant is an ER antagonist/degrader. We assessed the preclinical efficacy of fulvestrant, avutometinib + VS-4718 (FAKi), and the triple combination in a chemotherapy/aromatase inhibitor-resistant LGSOC patient-derived tumor xenograft (PDX) model. Tissue obtained from a LGSOC patient wild-type for KRAS/NRAS/BRAF mutations in progression after chemotherapy/anastrozole was transplanted into female CB17/lcrHsd-Prkdc/SCID mice (PDX-OVA(K)250). The animals were treated with either saline/control, fulvestrant, avutometinib/FAKi, or the triple combination of avutometinib/FAKi/fulvestrant. Avutometinib and FAKi were given five-days on and two-days off through oral gavage. Fulvestrant was administered subcutaneously weekly. Mechanistic studies were performed ex vivo using Western blot assays. Animals treated with the triple combination demonstrated stronger tumor growth inhibition compared to all the other experimental groups including control/saline (p < 0.001), single-agent fulvestrant (p = 0.04 from day eight and onwards), and avutometinib/FAKi (p = 0.02 from day 18). Median survival for mice treated with saline/control was 29 days while mice in all other experimental groups were alive at day 60 (p < 0.0001). Treatment was well tolerated across all experimental treatments. By Western blot, exposure of OVA(K)250 to the triple combination demonstrated a decrease in phosphorylated MEK (p-MEK) and p-ERK levels. The addition of fulvestrant to avutometinib/FAKi is well tolerated in vivo and enhances the antitumor activity of avutometinib/FAKi in a LGSOC-PDX model with acquired resistance to chemotherapy/aromatase inhibitors. These results support the clinical evaluation of avutometinib/defactinib in combination with fulvestrant or an aromatase inhibitor in patients with recurrent LGSOC. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

15 pages, 3003 KB  
Article
Phylogenetic and Molecular Evolutionary Insights into Monkeypox Virus Circulation in Shenzhen, China, 2023–2024
by Chuan Shi, Xiaochen Zheng, Lei Lei, Jinhui Xiao, Guangqing Yu, Yingdong Li, Zhifeng Ma, Minjie Li, Yanling Zeng, Ziquan Lv, Yixiong Chen, Wei Tan and Qianru Wang
Viruses 2025, 17(9), 1214; https://doi.org/10.3390/v17091214 - 5 Sep 2025
Viewed by 1318
Abstract
The 2022 global mpox outbreak highlighted the risk of sustained human-to-human transmission of monkeypox virus (MPXV) in non-endemic regions, yet genomic surveillance in Asia, particularly in China, remains limited. This study conducted horizontal genomic surveillance of MPXV in Shenzhen from 2023 to 2024 [...] Read more.
The 2022 global mpox outbreak highlighted the risk of sustained human-to-human transmission of monkeypox virus (MPXV) in non-endemic regions, yet genomic surveillance in Asia, particularly in China, remains limited. This study conducted horizontal genomic surveillance of MPXV in Shenzhen from 2023 to 2024 to characterize the phylogenetic structure, mutational patterns, and adaptive evolution of locally circulating strains. Phylogenetic analysis showed 95.2% of strains belonged to the dominant lineage C.1.1, with 4.8% in lineage E.3, forming three distinct genetic clusters that indicate multiple independent introductions and established local transmission chains. Whole-genome mutational analysis identified 146 single-nucleotide polymorphisms (SNPs), 81.5% of which carried APOBEC3-mediated mutation signatures (TC > TT and GA > AA), reflecting host-driven antiviral editing. Notably, dynamic changes in low-complexity regions (LCRs) were observed, implying potential roles in genome plasticity and adaptive evolution. Functional analysis revealed non-synonymous substitution biases in host-interacting proteins OPG064, OPG145, and OPG210, while replication protein OPG105 remained conserved. Structural modeling identified critical substitutions in OPG002 (S54F), OPG016 (R84K), and OPG036 (R48C) that may enhance immune evasion by modulating TNF-α signaling, NKG2D engagement, and Type I interferon antagonism. These findings illuminate unique MPXV evolutionary dynamics in Shenzhen, emphasizing continuous genomic surveillance for non-endemic outbreak preparedness. Full article
Show Figures

Figure 1

15 pages, 3010 KB  
Article
Characterization of Human Papillomavirus 16 from Kinshasa (Democratic Republic of the Congo)—Implications for Pathogenicity and Vaccine Effectiveness
by Paula Iglesias, Celine Tendobi, Silvia Carlos, Maria D. Lozano, David Barquín, Luis Chiva and Gabriel Reina
Microorganisms 2022, 10(12), 2492; https://doi.org/10.3390/microorganisms10122492 - 16 Dec 2022
Cited by 6 | Viewed by 2980
Abstract
Human Papillomavirus (HPV) type 16 is the main etiological agent of cervical cancer worldwide. Mutations within the virus genome may lead to an increased risk of cancer development and decreased vaccine response, but there is a lack of information about strains circulating in [...] Read more.
Human Papillomavirus (HPV) type 16 is the main etiological agent of cervical cancer worldwide. Mutations within the virus genome may lead to an increased risk of cancer development and decreased vaccine response, but there is a lack of information about strains circulating in Sub-Saharan Africa. Endocervical cytology samples were collected from 480 women attending a voluntary cervical cancer screening program at Monkole Hospital and four outpatient centers in Kinshasa, Democratic Republic of the Congo (DRC). The prevalence of HPV infection was 18.8% and the most prevalent high-risk types were HPV16 (12.2%) followed by HPV52 (8.8%) and HPV33/HPV35 (7.8% each). HPV16 strains were characterized: 57.1% were classified as C lineage; two samples (28.6%) as A1 and one sample belonged to B1 lineage. HPV33, HPV35, HPV16, and HPV58 were the most frequent types associated with low-grade intraepithelial lesion while high-grade squamous intraepithelial lesions were predominantly associated with HPV16. Several L1 mutations (T266A, S282P, T353P, and N181T) were common in Kinshasa, and their potential effect on vaccine-induced neutralization, especially the presence of S282P, should be further investigated. Long control region (LCR) variability was high with frequent mutations like G7193T, G7521A, and G145T that could promote malignancy of these HPV16 strains. This study provides a helpful basis for understanding HPV16 variants circulating in Kinshasa and the potential association between mutations of LCR region and malignancy and of L1 and vaccine activity. Full article
(This article belongs to the Special Issue Diagnosis of Viral Infections)
Show Figures

Figure 1

13 pages, 1857 KB  
Article
Molecular Characterization of Human Papillomavirus Type 159 (HPV159)
by Iva Marković, Lea Hošnjak, Katja Seme and Mario Poljak
Viruses 2021, 13(8), 1668; https://doi.org/10.3390/v13081668 - 23 Aug 2021
Cited by 4 | Viewed by 3265
Abstract
Human papillomavirus type 159 (HPV159) was identified in an anal swab sample and preliminarily genetically characterized by our group in 2012. Here we present a detailed molecular in silico analysis that showed that the HPV159 viral genome is 7443 bp in length and [...] Read more.
Human papillomavirus type 159 (HPV159) was identified in an anal swab sample and preliminarily genetically characterized by our group in 2012. Here we present a detailed molecular in silico analysis that showed that the HPV159 viral genome is 7443 bp in length and divided into five early and two late genes, with conserved functional domains and motifs, and a non-coding long control region (LCR) with significant regulatory sequences that allow the virus to complete its life cycle and infect novel host cells. HPV159, clustering into the cutaneotropic Betapapillomavirus (Beta-PV) genus, is phylogenetically most similar to HPV9, forming an individual phylogenetic group in the viral species Beta-2. After testing a large representative collection of clinical samples with HPV159 type-specific RT-PCR, in addition to the anal canal from which the first HPV159 isolate was obtained, HPV159 was further detected in other muco-cutaneous (4/181, 2.2%), mucosal (22/764, 2.9%), and cutaneous (14/554, 2.5%) clinical samples, suggesting its extensive tissue tropism. However, because very low HPV159 viral loads were estimated in the majority of positive samples, it seemed that HPV159 mainly caused clinically insignificant infections of the skin and mucosa. Using newly developed, highly sensitive HPV159-specific nested PCRs, two additional HPV159 LCR viral variants were identified. Nevertheless, all HPV159 mutations were demonstrated outside important functional domains of the LCR, suggesting that the HPV159 viral variants were most probably not pathogenically different. This complete molecular characterization of HPV159 enhances our knowledge of the genome characteristics, tissue tropism, and phylogenetic diversity of Beta-PVs that infect humans. Full article
(This article belongs to the Special Issue State-of-the-Art Virology Research in Croatia)
Show Figures

Figure 1

13 pages, 1627 KB  
Article
Nanog, in Cooperation with AP1, Increases the Expression of E6/E7 Oncogenes from HPV Types 16/18
by Yakelin Díaz-Tejeda, Miriam C. Guido-Jiménez, Helga López-Carbajal, Alfredo Amador-Molina, Rocío Méndez-Martínez, Patricio Gariglio-Vidal, Marcela Lizano and Alejandro García-Carrancá
Viruses 2021, 13(8), 1482; https://doi.org/10.3390/v13081482 - 28 Jul 2021
Cited by 6 | Viewed by 3204
Abstract
Persistent infections with some types of human papillomavirus (HPV) constitute the major etiological factor for cervical cancer development. Nanog, a stem cell transcription factor has been shown to increase during cancer progression. We wanted to determine whether Nanog could modulate transcription of E6 [...] Read more.
Persistent infections with some types of human papillomavirus (HPV) constitute the major etiological factor for cervical cancer development. Nanog, a stem cell transcription factor has been shown to increase during cancer progression. We wanted to determine whether Nanog could modulate transcription of E6 and E7 oncogenes. We used luciferase reporters under the regulation of the long control region (LCR) of HPV types 16 and 18 (HPV16/18) and performed RT-qPCR. We found that Nanog increases activity of both viral regulatory regions and elevates endogenous E6/E7 mRNA levels in cervical cancer-derived cells. We demonstrated by in vitro mutagenesis that changes at Nanog-binding sites found in the HPV18 LCR significantly inhibit transcriptional activation. Chromatin immunoprecipitation (ChIP) assays showed that Nanog binds in vivo to the HPV18 LCR, and its overexpression increases its binding as well as that of c-Jun. Surprisingly, we observed that mutation of AP1-binding sites also affect Nanog’s ability to activate transcription, suggesting cooperation between the two factors. We searched for putative Nanog-binding sites in the LCR of several HPVs and surprisingly found them only in those types associated with cancer development. Our study shows, for the first time, a role for Nanog in the regulation of E6/E7 transcription of HPV16/18. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

10 pages, 822 KB  
Article
Analysis of Human Papillomavirus (HPV) 16 Variants Associated with Cervical Infection in Italian Women
by Marianna Martinelli, Chiara Villa, Giovanni Sotgiu, Narcisa Muresu, Federica Perdoni, Rosario Musumeci, Romina Combi, Antonio Cossu, Andrea Piana and Clementina Cocuzza
Int. J. Environ. Res. Public Health 2020, 17(1), 306; https://doi.org/10.3390/ijerph17010306 - 1 Jan 2020
Cited by 9 | Viewed by 4264
Abstract
This study aims to evaluate HPV16 variants distribution in a population of Italian women living in two different regions (Lombardy and Sardinia) by sequence analyses of HPV16-positive cervical samples, in order to reconstruct the phylogenetic relationship among variants to identify the currently circulating [...] Read more.
This study aims to evaluate HPV16 variants distribution in a population of Italian women living in two different regions (Lombardy and Sardinia) by sequence analyses of HPV16-positive cervical samples, in order to reconstruct the phylogenetic relationship among variants to identify the currently circulating lineages. Analyses were conducted starting from DNA isolated from 67 HPV16-positive cervical samples collected from two different Italian centres (31 from Lombardy and 36 from Sardinia) of women with normal and abnormal cervical cytology. The entire long control region (LCR) and 300 nt of the E6 gene was sequenced to identify intra-type variants. Sequence comparison and phylogenetic analysis were made using a distance-based neighbour joining method (NJ) and Kimura two-parameter model. Data obtained reported that Italian sequences mainly belonged to the European lineage, in particular sublineage A2. Only five sequences clustered in non-European branches: two in North American lineage (sublineage D1), two in African-1 (sublineage B1) and one in African-2. A new 27 nucleotide duplication in the central segment of the LCR region was found in a sequence obtained from a sample isolated in Sardinia. A predominance of European variants was detected, with some degree of variability among the studied HPV16 strains. This study contributes to the implementation of data regarding the molecular epidemiology of HPV16 variants. Full article
(This article belongs to the Section Infectious Disease Epidemiology)
Show Figures

Figure 1

11 pages, 172 KB  
Article
Genomic Polymorphism of Human Papillomavirus Type 52 in Women from Northeast China
by Zhengrong Sun, Zhitao Lu, Jianhua Liu, Guili Wang, Weiqiang Zhou, Lianxia Yang, Chao Liu and Qiang Ruan
Int. J. Mol. Sci. 2012, 13(11), 14962-14972; https://doi.org/10.3390/ijms131114962 - 15 Nov 2012
Cited by 14 | Viewed by 6287
Abstract
Human papillomavirus (HPV) 52 is an oncogenic HPV type prevalent in Asia. The aim of the study was to analyze HPV 52 genetic variations in women from Northeast China. To explore the intratypic variants of HPV 52, the genomic regions of L1, [...] Read more.
Human papillomavirus (HPV) 52 is an oncogenic HPV type prevalent in Asia. The aim of the study was to analyze HPV 52 genetic variations in women from Northeast China. To explore the intratypic variants of HPV 52, the genomic regions of L1, E6, E7 and long control region (LCR) of HPV 52, which have been identified in women from Northeast China by HPV GenoArray test, were analyzed. Twenty-five mutations were identified in the regions examined. Of the mutations found in the L1 gene, three novel nonsynonymous mutations of C5640T, A5641T and G5642A were located within the region that encodes the binding domain of neutralizing antibodies against HPV 52. Although four variations were identified in HPV 52 E6 and E7 genes, no significant association was found between the mutations and the cytological lesion of the patients. Eight mutations, including a novel CTT76817683 deletion, found in the LCR of HPV 52 encompassed the known transcription binding sites, which may possibly affect the transcription of the oncogenic genes of E6 and E7. The most prevalent HPV 52 variant in women from northeastern China belongs to clade L1-LN-A. The genetic variations of HPV 52, including three novel nonsynonymous mutations of C5640T, A5641T and G5642A in the L1 gene and a novel CTT7681–7683 deletion in the LCR, were first documented in strains from women in Northeast China. The statistical result showed no associations between the variants and the severities of the infected women. These findings provide new data regarding gene variations of HPV 52. Full article
(This article belongs to the Special Issue Advances in Molecular Oncology (special issue))
Back to TopTop