Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = LCA of green methanol

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1037 KiB  
Systematic Review
Evaluating the Sustainability of the Natural Gas-Based Methanol-to-Gasoline Industry: A Global Systematic Review
by Hussein Al-Yafei, Saleh Aseel and Ali Ansaruddin Kunju
Sustainability 2025, 17(12), 5355; https://doi.org/10.3390/su17125355 - 10 Jun 2025
Viewed by 798
Abstract
The sustainability of the natural gas-to-methanol (NGTM) and methanol-to-gasoline (MTG) processes are assessed in this systematic review as a potential substitute in the global energy transition. Methanol offers itself as a versatile and less carbon-intensive substitute for conventional gasoline in light of growing [...] Read more.
The sustainability of the natural gas-to-methanol (NGTM) and methanol-to-gasoline (MTG) processes are assessed in this systematic review as a potential substitute in the global energy transition. Methanol offers itself as a versatile and less carbon-intensive substitute for conventional gasoline in light of growing environmental concerns and the demand for cleaner fuels. This review’s rationale is to assess MTG’s ability to lessen environmental impact while preserving compatibility with current fuel infrastructure. The goal is to examine methanol and gasoline’s effects on the environment, society, and economy throughout their life cycles. This review used a two-phase systematic literature review methodology, filtering and evaluating studies that were indexed by Scopus using bibliometric and thematic analysis. A total of 25 documents were reviewed, in which 22 documents analyzed part of this study, and 68% employed LCA or techno-economic analysis, with the U.S. contributing 35% of the overall publications. A comparative analysis of the reviewed literature indicates that methanol-based fuels offer significantly lower greenhouse gas (GHG) emissions and life cycle environmental impacts than gasoline, particularly when combined with carbon capture and renewable feedstocks. This review also highlights benefits, such as improved safety and energy security, while acknowledging challenges, including high production costs, infrastructure adaptation, and toxicity concerns. Several drawbacks are high manufacturing costs, the necessity to adjust infrastructure, and toxicity issues. The report suggests investing in renewable methanol production, AI-driven process optimization, and robust legislative frameworks for integrating green fuels. The life cycle sustainability assessment (LCSA) of NGTM and MTG systems should be investigated in future studies, particularly in light of different feedstock and regional circumstances. The findings emphasize NGTM and MTG’s strategic role in aligning with several UN Sustainable Development Goals (SDGs) and add to the worldwide conversation on sustainable fuels. A strong transition necessitates multi-stakeholder cooperation, innovation, and supporting policies to fully realize the sustainability promise of cleaner fuels like methanol. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

41 pages, 11608 KiB  
Review
A Review of LCA Studies on Marine Alternative Fuels: Fuels, Methodology, Case Studies, and Recommendations
by Yue Wang, Xiu Xiao and Yulong Ji
J. Mar. Sci. Eng. 2025, 13(2), 196; https://doi.org/10.3390/jmse13020196 - 22 Jan 2025
Cited by 3 | Viewed by 3390
Abstract
Life Cycle Assessment (LCA) methodology can be used to quantitatively assess the greenhouse gas emissions of low- or zero-carbon marine alternative fuels throughout their life cycle (from well to wake) and is an important basis for ensuring a green energy transition in the [...] Read more.
Life Cycle Assessment (LCA) methodology can be used to quantitatively assess the greenhouse gas emissions of low- or zero-carbon marine alternative fuels throughout their life cycle (from well to wake) and is an important basis for ensuring a green energy transition in the shipping industry. This paper first clarifies the trends and requirements of low-carbon development in shipping and introduces the major ship emission reduction technologies and evaluation methods. Next, the characteristics of various alternative marine fuels (i.e., LNG, hydrogen, methanol, ammonia, and biofuels) are comprehensively discussed and analyzed in terms of production, storage, transportation, and ship applications. In addition, this work provides a comprehensive overview of LCA methodology, including its relevant standards and assessment tools, and establishes a framework for LCA of marine alternative fuels. On this basis, a literature review of the current research on LCA of marine alternative fuels from the perspectives of carbon emissions, pollution emissions, and economics is presented. The case review covers 64 alternative-fueled ships and 12 groups of fleets operating in different countries and waters. Finally, this paper discusses the main shortcomings that exist in the current research and provides an outlook on the future development of LCA research of marine alternative fuels. Full article
(This article belongs to the Special Issue Advanced Technologies for New (Clean) Energy Ships)
Show Figures

Figure 1

29 pages, 4384 KiB  
Article
Life Cycle Assessment of Green Methanol Production Based on Multi-Seasonal Modeling of Hybrid Renewable Energy and Storage Systems
by Hüseyin Güleroğlu and Zehra Yumurtacı
Sustainability 2025, 17(2), 624; https://doi.org/10.3390/su17020624 - 15 Jan 2025
Cited by 1 | Viewed by 3312
Abstract
This study evaluates the environmental implications of green methanol production under seasonal energy variability through a dual-comparative analytical framework. The research employs ReCiPe 2016 Endpoint (H) methodology to assess four seasonal renewable energy configurations (with varying solar–wind ratios across seasons) against conventional grid-based [...] Read more.
This study evaluates the environmental implications of green methanol production under seasonal energy variability through a dual-comparative analytical framework. The research employs ReCiPe 2016 Endpoint (H) methodology to assess four seasonal renewable energy configurations (with varying solar–wind ratios across seasons) against conventional grid-based production, utilizing a hybrid battery storage system combining lithium-ion and vanadium redox flow technologies. The findings reveal significant environmental benefits, with seasonal renewable configurations achieving 24.38% to 28.26% reductions in global warming potential compared to conventional methods. Monte Carlo simulation (n = 20,000) confirms these improvements across all impact categories. Our process analysis identifies hydrogen production as the primary environmental impact contributor (74–94%), followed by carbon capture (5–13%) and methanol synthesis (0.5–4.5%). Water consumption impacts show seasonal variation, ranging from 16.55% in summer to 11.62% in winter. There is a strong positive correlation between hydrogen production efficiency and solar energy availability, suggesting that higher solar energy input contributes to improved production outcomes. This research provides a framework for optimizing sustainable methanol production through seasonal renewable energy integration, offering practical insights for industrial implementation while maintaining production stability through effective energy storage solutions. Full article
Show Figures

Figure 1

19 pages, 1153 KiB  
Article
LCA Analysis Decarbonisation Potential of Aluminium Primary Production by Applying Hydrogen and CCUS Technologies
by Antonis Peppas, Chrysa Politi, Sotiris Kottaridis and Maria Taxiarchou
Hydrogen 2023, 4(2), 338-356; https://doi.org/10.3390/hydrogen4020024 - 20 May 2023
Cited by 11 | Viewed by 4343
Abstract
The energy intensity and high emissions of extractive industries bring a major need for decarbonisation actions. In 2021, extraction and primary processing of metals and minerals were responsible for 4.5 Gt of equivalent CO2. The aluminium industry specifically accounted for total [...] Read more.
The energy intensity and high emissions of extractive industries bring a major need for decarbonisation actions. In 2021, extraction and primary processing of metals and minerals were responsible for 4.5 Gt of equivalent CO2. The aluminium industry specifically accounted for total emissions of 1.1 Gt CO2 eq. per year. Reaching the European milestone of zero emissions by 2050, requires a 3% annual reduction. To achieve this, the industry has searched for innovative solutions, considering the treatment of emitted CO2 with techniques such as Carbon Capture Utilisation and Storage (CCUS), or the prevention of CO2 formation on the first place by utilising alternative fuels such as hydrogen (H2). This study aims to comprehensively compare the overall environmental performance of different strategies for addressing not only greenhouse gas (GHG) emission reduction potential, but also emissions to air in general, as well as freshwater and terrestrial ecotoxicity, which are commonly overlooked. Specifically, a Life Cycle Assessment (LCA) is conducted, analysing four scenarios for primary Al production, utilising (1) a combination of fossil fuels, specifically Natural Gas (NG), Light Fuel Oil (LFO) and Heavy Fuel Oil (HFO) (conventional approach); (2) carbon capture and geological storage; (3) Carbon Capture and Utilisation (CCU) for methanol (MeOH) production and (4) green H2, replacing NG. The results show that green H2 replacing NG is the most environmentally beneficial option, accounting for a 10.76% reduction in Global Warming Potential (GWP) and 1.26% in Photochemical Ozone Formation (POF), while all other impact categories were lower compared to CCUS. The results offer a comprehensive overview to support decision-makers in comparing the overall environmental impact and the emission reduction potential of the different solutions. Full article
(This article belongs to the Special Issue Feature Papers in Hydrogen (Volume 2))
Show Figures

Figure 1

Back to TopTop