Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = KLEPTOSE® HPB

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 9495 KB  
Article
Polysorbates versus Hydroxypropyl Beta-Cyclodextrin (HPβCD): Comparative Study on Excipient Stability and Stabilization Benefits on Monoclonal Antibodies
by Hailong Zhang, Shiqi Hong, Sarah Si Kai Tan, Tao Peng, Lucas Yuan Hao Goh, Kwan Hang Lam, Keat Theng Chow and Rajeev Gokhale
Molecules 2022, 27(19), 6497; https://doi.org/10.3390/molecules27196497 - 1 Oct 2022
Cited by 19 | Viewed by 5970
Abstract
Polysorbates (PS 20 and PS 80) are the most widely used surfactants in biopharmaceutical formulations to protect proteins from denaturation, aggregation, and surface adsorption. To date, around 70% of marketed therapeutic antibodies contain either PS 20 or PS 80 in their formulations. However, [...] Read more.
Polysorbates (PS 20 and PS 80) are the most widely used surfactants in biopharmaceutical formulations to protect proteins from denaturation, aggregation, and surface adsorption. To date, around 70% of marketed therapeutic antibodies contain either PS 20 or PS 80 in their formulations. However, polysorbates are chemically diverse mixtures, which are prone to degradation by oxidation and hydrolysis to produce peroxides and fatty acids, which, in turn, induce protein oxidation, aggregation, and insoluble particle formation. These will negatively impact protein quality and stability. Thus, polysorbate degradation has emerged as one of the major challenges in the development and commercialization of therapeutic protein products. KLEPTOSE® HPβCD (hydroxypropyl beta-cyclodextrin), a new multifunctional excipient, has been shown to provide protein stabilization functions in biopharmaceutical downstream processes and in their final formulations. This study aims to evaluate HPβCD, a new molecule of its class, against polysorbates as a stabilizer in biologics formulations. In this study, the chemical stability of KLEPTOSE® HPβCDs is compared with polysorbates (20 and 80) under various stress conditions. When subjected to heat stress, HPβCDs show little change in product recovery (90.7–100.7% recovery for different HPβCDs), while polysorbates 20 and 80 show significant degradation, with only 11.5% and 7.3% undegraded product remaining, respectively. When subjected to other chemical stressors, namely, autoclave, light, and oxidative stresses, HPβCD remains almost stable, while polysorbates show more severe degradation, with 95.5% to 98.8% remaining for polysorbate 20 and 85.5% to 97.4% remaining for polysorbate 80. Further, profiling characterization and degradation analysis reveal that chemical structures of HPβCDs remain intact, while polysorbates undergo significant hydrolytic degradation and oxidation. Lastly, the physicochemical stability of monoclonal antibodies in formulations is investigated. When subjected to light stress, adalimumab, as a model mAb, formulated in the presence of HPβCD, shows a significant decrease in protein aggregation, and superior monomer and total protein recovery compared to PS 80-containing formulations. HPβCD also reduces both agitation and thermal stress-induced protein aggregation and prevents subvisible particle formation compared to PS 80. Full article
Show Figures

Figure 1

25 pages, 3269 KB  
Article
Hydroxylpropyl-β-cyclodextrin as Potential Excipient to Prevent Stress-Induced Aggregation in Liquid Protein Formulations
by Tanja Stolzke, Franziska Krieg, Tao Peng, Hailong Zhang, Olaf Häusler and Christoph Brandenbusch
Molecules 2022, 27(16), 5094; https://doi.org/10.3390/molecules27165094 - 10 Aug 2022
Cited by 15 | Viewed by 5411
Abstract
Due to the growing demand for patient-friendly subcutaneous dosage forms, the ability to increasing protein solubility and stability in formulations to deliver on the required high protein concentrations is crucial. A common approach to ensure protein solubility and stability in high concentration protein [...] Read more.
Due to the growing demand for patient-friendly subcutaneous dosage forms, the ability to increasing protein solubility and stability in formulations to deliver on the required high protein concentrations is crucial. A common approach to ensure protein solubility and stability in high concentration protein formulations is the addition of excipients such as sugars, amino acids, surfactants, approved by the Food and Drug Administration. In a best-case scenario, these excipients fulfil multiple demands simultaneously, such as increasing long-term stability of the formulation, reducing protein adsorption on surfaces/interfaces, and stabilizing the protein against thermal or mechanical stress. 2-Hydroxylpropyl-β-cyclodextrin (derivative of β-cyclodextrin) holds this potential, but has not yet been sufficiently investigated for use in protein formulations. Within this work, we have systematically investigated the relevant molecular interactions to identify the potential of Kleptose®HPB (2-hydroxylpropyl-β-cyclodextrin from Roquette Freres, Lestrem, France) as “multirole” excipient within liquid protein formulations. Based on our results three factors determine the influence of Kleptose®HPB on protein formulation stability: (1) concentration of Kleptose®HPB, (2) protein type and protein concentration, and (3) quality of the protein formulation. Our results not only contribute to the understanding of the relevant interactions but also enable the target-oriented use of Kleptose®HPB within formulation design. Full article
Show Figures

Figure 1

Back to TopTop