Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = KE-GRA-TOPSIS

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 3903 KiB  
Article
An Integrated Multi-Criteria Decision Method for Remanufacturing Design Considering Carbon Emission and Human Ergonomics
by Changping Hu, Xinfu Lv, Ruotong Wang, Chao Ke, Yingying Zuo, Jie Lu and Ruiying Kuang
Processes 2025, 13(8), 2354; https://doi.org/10.3390/pr13082354 - 24 Jul 2025
Viewed by 317
Abstract
Remanufacturing design is a green design model that considers remanufacturability during the design process to improve the reuse of components. However, traditional remanufacturing design scheme decision making focuses on the remanufacturability indicator and does not fully consider the carbon emissions of the remanufacturing [...] Read more.
Remanufacturing design is a green design model that considers remanufacturability during the design process to improve the reuse of components. However, traditional remanufacturing design scheme decision making focuses on the remanufacturability indicator and does not fully consider the carbon emissions of the remanufacturing process, which will take away the energy-saving and emission reduction benefits of remanufacturing. In addition, remanufacturing design schemes rarely consider the human ergonomics of the product, which leads to uncomfortable handling of the product by the customer. To reduce the remanufacturing carbon emission and improve customer comfort, it is necessary to select a reasonable design scheme to satisfy the carbon emission reduction and ergonomics demand; therefore, this paper proposes an integrated multi-criteria decision-making method for remanufacturing design that considers the carbon emission and human ergonomics. Firstly, an evaluation system of remanufacturing design schemes is constructed to consider the remanufacturability, cost, carbon emission, and human ergonomics of the product, and the evaluation indicators are quantified by the normalization method and the Kansei engineering (KE) method; meanwhile, the hierarchical analysis method (AHP) and entropy weight method (EW) are used for the calculation of the subjective and objective weights. Then, a multi-attribute decision-making method based on the combination of an assignment approximation of ideal solution ranking (TOPSIS) and gray correlation analysis (GRA) is proposed to complete the design scheme selection. Finally, the feasibility of the scheme is verified by taking a household coffee machine as an example. This method has been implemented as an application using Visual Studio 2022 and Microsoft SQL Server 2022. The research results indicate that this decision-making method can quickly and accurately generate reasonable remanufacturing design schemes. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

21 pages, 5073 KiB  
Article
Personalized Product Evaluation Based on GRA-TOPSIS and Kansei Engineering
by Huafeng Quan, Shaobo Li, Hongjing Wei and Jianjun Hu
Symmetry 2019, 11(7), 867; https://doi.org/10.3390/sym11070867 - 3 Jul 2019
Cited by 56 | Viewed by 5704
Abstract
With the improvement of human living standards, users’ requirements have changed from function to emotion. Helping users pick out the most suitable product based on their subjective requirements is of great importance for enterprises. This paper proposes a Kansei engineering-based grey relational analysis [...] Read more.
With the improvement of human living standards, users’ requirements have changed from function to emotion. Helping users pick out the most suitable product based on their subjective requirements is of great importance for enterprises. This paper proposes a Kansei engineering-based grey relational analysis and techniques for order preference by similarity to ideal solution (KE-GAR-TOPSIS) method to make a subjective user personalized ranking of alternative products. The KE-GRA-TOPSIS method integrates five methods, including Kansei Engineering (KE), analytic hierarchy process (AHP), entropy, game theory, and grey relational analysis-TOPSIS (GRA-TOPSIS). First, an evaluation system is established by KE and AHP. Second, we define a matrix variate—Kansei decision matrix (KDM)—to describe the satisfaction of user requirements. Third, the AHP is used to obtain subjective weight. Next, the entropy method is employed to obtain objective weights by taking the KDM as input. Then the two types of weights are optimized using game theory to obtain the comprehensive weights. Finally, the GRA-TOPSIS method takes the comprehensive weights and the KMD as inputs to rank alternatives. A comparison of the KE-GRA-TOPSIS, KE-TOPSIS, KE-GRA, GRA-TOPSIS, and TOPSIS is conducted to illustrate the unique merits of the KE-GRA-TOPSIS method in Kansei evaluation. Finally, taking the electric drill as an example, we describe the process of the proposed method in detail, which achieves a symmetry between the objectivity of products and subjectivity of users. Full article
Show Figures

Figure 1

Back to TopTop