Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Jing-Jin-Ji District

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1663 KiB  
Article
District Heating Energy Consumption of the Building Sector in the Jing-Jin-Ji urban Agglomeration: Decomposition and Decoupling Analysis
by Linghui Zhang, Xin Ma and Shushen Zhang
Sustainability 2020, 12(6), 2555; https://doi.org/10.3390/su12062555 - 24 Mar 2020
Cited by 5 | Viewed by 3073
Abstract
China’s rapid urbanization has caused dramatically increasing energy consumption in the district heating systems of the building sector in the Jing-Jin-Ji urban agglomeration, and this change has led to enormous air pollution issues in this region. However, the drivers and the sustainable development [...] Read more.
China’s rapid urbanization has caused dramatically increasing energy consumption in the district heating systems of the building sector in the Jing-Jin-Ji urban agglomeration, and this change has led to enormous air pollution issues in this region. However, the drivers and the sustainable development process of the district heating system of the building sector have not been investigated to understand the management of energy conservation and emissions reduction in the Jing-Jin-Ji urban agglomeration. This study investigates the drivers of the district heating energy consumption of the building sector (DHEB) in the Jing-Jin-Ji urban agglomeration between 2004 and 2016 by developing a decomposition framework. The decoupling status between the DHEB and gross domestic product (GDP) is then analyzed based on the Tapio decoupling index. The results show that a weak decoupling effect is mainly found between the DHEB and GDP in the Jing-Jin-Ji urban agglomeration from 2004 to 2016. The increase in the DHEB in 2004–2016 is largely driven by the growth of the district heating area and population, while the heating energy intensity negatively contributes to the increase. Significant differences in the effects of the share of the energy mix and share of heat production technology were found between subregions in response to government policy, which impacted levels in Beijing, Tianjin, and Hebei in decreasing order. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

13 pages, 6821 KiB  
Article
Estimation of Urbanization Impacts on Local Weather: A Case Study in Northern China (Jing-Jin-Ji District)
by Hui-Dong Su, Xuejian Cao, Da-Cheng Wang, Yang-Wen Jia, Guangheng Ni, Junhua Wang, Mingxi Zhang and Cunwen Niu
Water 2019, 11(4), 797; https://doi.org/10.3390/w11040797 - 17 Apr 2019
Cited by 9 | Viewed by 3278
Abstract
With the past rapid economic development and large population growth, Jing-Jin-Ji District has been undergoing rapid urbanization, which has caused considerable regional weather changes in local regions. In this paper, we used the Weather Research and Forecasting (WRF) model to quantitatively analyze the [...] Read more.
With the past rapid economic development and large population growth, Jing-Jin-Ji District has been undergoing rapid urbanization, which has caused considerable regional weather changes in local regions. In this paper, we used the Weather Research and Forecasting (WRF) model to quantitatively analyze the effects of past urbanization and potential future urbanization on the regional weather in the center of Jing-Jin-Ji District. The hydrometeorological data from two weeks in July 2019 were used to simulate the influence of urbanization on local weather in the Jing-Jin-Ji District at regional scales using a single-layer canopy parameterization scheme. To better quantify the differences in temperature and precipitation induced by urbanization, three simulation scenarios were designed, which were no urban cover (NU), current urbanization cover (CU), and full urban land cover (FU), respectively. The results showed that: (1) Urbanization progress (from NU to CU and from CU to FU) in Jing-Jin-Ji District increased the daytime temperature, night temperature, and temperature difference between day and night, while decreasing the total rainfall and peak rainfall. (2) Compared with NU, the mean temperature of the CU and FU increased 0.3 K and 0.6 K, respectively, and the mean precipitation of CU and FU decreased by approximately 6% and 8.4%, respectively. (3) The main influence of urbanization on weather was reflected by the maximum temperature and peak rainfall, while the other impacts were relatively insignificant. (4) Compared with NU, the maximum temperature of CU and FU increased 0.82 K and 1.35 K, respectively, and the peak rainfall of NU and FU decreased by approximately 9.5% and 19.0%, respectively; The results of this study bring to light the urban management strategies for policy makers. Full article
Show Figures

Figure 1

Back to TopTop