Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Ivigtut

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 5933 KB  
Article
Chemical Peculiarities of Quartz from Peralkaline Granitoids
by Karel Breiter, Jindřich Kynický, Michaela Vašinová Galiová and Michaela Hložková
Minerals 2025, 15(8), 790; https://doi.org/10.3390/min15080790 - 28 Jul 2025
Viewed by 482
Abstract
Quartz from four typical but contrasting peralkaline quartz-saturated granite systems (Khan Bogd and Khalzan Buregte plutons (Mongolia), Ivigtut stock (Greenland), Europa and Madeira plutons (Pitinga magmatic province, Brazil)) was analyzed using LA-ICP-MS to define the range of selected trace element content and trends [...] Read more.
Quartz from four typical but contrasting peralkaline quartz-saturated granite systems (Khan Bogd and Khalzan Buregte plutons (Mongolia), Ivigtut stock (Greenland), Europa and Madeira plutons (Pitinga magmatic province, Brazil)) was analyzed using LA-ICP-MS to define the range of selected trace element content and trends in their evolution and to compare this content with published data from granitoids of other geochemical types. The evaluation of about 1100 analyses found the studied trace elements mostly in ranges <0.01–18 ppm Li (median 2.41 ppm), 1.2–77 ppm Ti (median 8.2 ppm), 8.3–163 ppm Al (median 42 ppm) and 0.05–5.7 ppm Ge (median 0.98 ppm) (in all cases 5% of the lowest and 5% of the highest values were omitted). Quartz from geochemically less evolved riebeckite-bearing granite plutons shows no Ti/Ge fractionation and displays either a positive Ti–Al correlation or no Ti–Al correlation. More fractionated and potentially mineralized peralkaline magmatic systems were formed within two distinct magmatic episodes: quartz from the older phases is relatively Ti-rich and evolved via Ti decrease with no possible Ge enrichment, while quartz from younger phases is Ti-poor from the beginning and has the ability of enrichment in Al and Ge. Relative enrichment in Al and increase in Ge/Ti value of quartz can serve as a supporting method for the identification of potentially ore-bearing magmatic systems. Full article
(This article belongs to the Special Issue Physicochemical Properties and Purification of Quartz Minerals)
Show Figures

Figure 1

29 pages, 7624 KB  
Article
Chemical and Textural Peculiarities of Zircon from Peralkaline Granites and Quartz-Bearing Syenites
by Karel Breiter, Jindřich Kynický and Zuzana Korbelová
Minerals 2024, 14(2), 187; https://doi.org/10.3390/min14020187 - 10 Feb 2024
Cited by 3 | Viewed by 2328
Abstract
Zircon from four plutons of peralkaline granites and quartz-bearing syenites, differing in geotectonic positions, petrological and mineralogical compositions, and contents of volatile and trace elements, was studied using SEM, CL, and EPMA with the intention to define typical textural and chemical features of [...] Read more.
Zircon from four plutons of peralkaline granites and quartz-bearing syenites, differing in geotectonic positions, petrological and mineralogical compositions, and contents of volatile and trace elements, was studied using SEM, CL, and EPMA with the intention to define typical textural and chemical features of zircon from peralkaline rocks. In strongly peralkaline Na-pyroxene-bearing rocks represented by the Khan Bogd and Khalzan Buregte plutons (Mongolia), the primary zircon is scarce or missing. Most zircon grains are secondary, originating in hydrothermal stage from primary Zr silicates. They often form globular or radial aggregates. Chemical compositions of zircon in these rocks typically show high contents of Y, moderate contents of REE (thus high Y/Yb values) together with low contents of U and Th and low analytical totals. In mildly peralkaline mica-bearing rocks represented by Ivigtut stock (Groenland) and Madeira pluton (Brazil), the exclusive primary Zr mineral is zircon, mostly of orthomagmatic origin. Its analytical totals approach 100 wt%, enrichment in HREE, resulting in low Y/Yb values, is typical. Zircon populations from two types of peralkaline granitoids can be distinguished from each other and from zircon from S-type granites based on combination of the Zr/Hf, Y/Yb, and U/Th values, or on the Y-Hf-P ternary diagram. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

Back to TopTop