Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = Integrated Satellite-Terrestrial Networks (ISTNs)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 1339 KiB  
Article
Link-State-Aware Proactive Data Delivery in Integrated Satellite–Terrestrial Networks for Multi-Modal Remote Sensing
by Ranshu Peng, Chunjiang Bian, Shi Chen and Min Wu
Remote Sens. 2025, 17(11), 1905; https://doi.org/10.3390/rs17111905 - 30 May 2025
Viewed by 522
Abstract
This paper seeks to address the limitations of conventional remote sensing data dissemination algorithms, particularly their inability to model fine-grained multi-modal heterogeneous feature correlations and adapt to dynamic network topologies under resource constraints. This paper proposes multi-modal-MAPPO, a novel multi-modal deep reinforcement learning [...] Read more.
This paper seeks to address the limitations of conventional remote sensing data dissemination algorithms, particularly their inability to model fine-grained multi-modal heterogeneous feature correlations and adapt to dynamic network topologies under resource constraints. This paper proposes multi-modal-MAPPO, a novel multi-modal deep reinforcement learning (MDRL) framework designed for a proactive data push in large-scale integrated satellite–terrestrial networks (ISTNs). By integrating satellite cache states, user cache states, and multi-modal data attributes (including imagery, metadata, and temporal request patterns) into a unified Markov decision process (MDP), our approach pioneers the application of the multi-actor-attention-critic with parameter sharing (MAPPO) algorithm to ISTNs push tasks. Central to this framework is a dual-branch actor network architecture that dynamically fuses heterogeneous modalities: a lightweight MobileNet-v3-small backbone extracts semantic features from remote sensing imagery, while parallel branches—a multi-layer perceptron (MLP) for static attributes (e.g., payload specifications, geolocation tags) and a long short-term memory (LSTM) network for temporal user cache patterns—jointly model contextual and historical dependencies. A dynamically weighted attention mechanism further adapts modality-specific contributions to enhance cross-modal correlation modeling in complex, time-varying scenarios. To mitigate the curse of dimensionality in high-dimensional action spaces, we introduce a multi-dimensional discretization strategy that decomposes decisions into hierarchical sub-policies, balancing computational efficiency and decision granularity. Comprehensive experiments against state-of-the-art baselines (MAPPO, MAAC) demonstrate that multi-modal-MAPPO reduces the average content delivery latency by 53.55% and 29.55%, respectively, while improving push hit rates by 0.1718 and 0.4248. These results establish the framework as a scalable and adaptive solution for real-time intelligent data services in next-generation ISTNs, addressing critical challenges in resource-constrained, dynamic satellite–terrestrial environments. Full article
(This article belongs to the Special Issue Advances in Multi-Source Remote Sensing Data Fusion and Analysis)
Show Figures

Figure 1

13 pages, 423 KiB  
Article
Joint User Association, Power Allocation and Beamforming for NOMA-Based Integrated Satellite–Terrestrial Networks
by Peizhe Xin, Zihao Fu, Zhiyi Chen, Jing Jiang, Jing Zou, Yu Zhang and Xinyue Hu
Entropy 2024, 26(12), 1055; https://doi.org/10.3390/e26121055 - 5 Dec 2024
Cited by 2 | Viewed by 1142
Abstract
This paper investigated a non-orthogonal multiple access (NOMA)-based integrated satellite–terrestrial network (ISTN), where each user can select to access a terrestrial base station (BS) or the satellite according to the capacity of BS and their individual transmission requirements. A two-stage algorithm is proposed [...] Read more.
This paper investigated a non-orthogonal multiple access (NOMA)-based integrated satellite–terrestrial network (ISTN), where each user can select to access a terrestrial base station (BS) or the satellite according to the capacity of BS and their individual transmission requirements. A two-stage algorithm is proposed to solve the achievable sum rate maximizing resource optimization problem. In the first stage, user associations are determined based on individual preference lists and the backhaul capacities of the access points (APs). In the second stage, the power allocation, and the receiving beamforming vectors are optimized alternately. Within each iteration, the closed-form solution for the transmit power is derived. Simulation results show the effectiveness of the proposed algorithm and the benefits brought by NOMA. When the backhaul link capacity of terrestrial BSs is sufficient, users (UEs) prefer to access these BSs. Otherwise, the satellite can offer QoS guarantees to UEs. Furthermore, the overall system performance reaches its optimum when the number of UEs in the system matches the number of receive antennas at the APs. Full article
Show Figures

Figure 1

30 pages, 1152 KiB  
Review
Review of Physical Layer Security in Integrated Satellite–Terrestrial Networks
by Rajnish Kumar and Shlomi Arnon
Electronics 2024, 13(22), 4414; https://doi.org/10.3390/electronics13224414 - 11 Nov 2024
Cited by 2 | Viewed by 2405
Abstract
With the success and commercialization of 5G, 3GPP has started working toward the sixth generation of communication systems. While 5G explored the concept of non-terrestrial networks like satellites and unmanned aerial vehicles working alongside terrestrial networks, 6G is expected to take this integration [...] Read more.
With the success and commercialization of 5G, 3GPP has started working toward the sixth generation of communication systems. While 5G explored the concept of non-terrestrial networks like satellites and unmanned aerial vehicles working alongside terrestrial networks, 6G is expected to take this integration a step further, aiming to achieve a more coherent network where satellites and terrestrial infrastructure work together seamlessly. However, the complexity and uniqueness of such networks create numerous attack surfaces that make them vulnerable to cyberattacks. The solution to such cyberattacks can be addressed by encryption and other upper-layer authentication methods. However, with the move to higher-frequency bands, such encryption techniques are difficult to scale for low-latency networks. In addition, the recent progress in quantum computing will make networks more vulnerable. To address such challenges, physical layer security (PLS) is proposed as a secure and quantum-resistant way to implement security by taking advantage of the physics of the channel and transceiver. This article reviews the latest trends and progress in PLS in integrated satellite–terrestrial networks (ISTNs) from a signal processing perspective. This work provides a comprehensive survey of the state-of-the-art research conducted, challenges, and future directions in the PLS of ISTNs. Full article
(This article belongs to the Special Issue Advances in Future Wireless Networks)
Show Figures

Figure 1

23 pages, 1097 KiB  
Article
Beam-Hopping-Based Resource Allocation in Integrated Satellite-Terrestrial Networks
by Mengying Zhang, Xiumei Yang and Zhiyong Bu
Sensors 2024, 24(14), 4699; https://doi.org/10.3390/s24144699 - 19 Jul 2024
Cited by 2 | Viewed by 1904
Abstract
The integrated satellite-terrestrial network (ISTN) provides a promising solution to achieve high-data-rate and ubiquitous connectivity in next-generation communication networks. Considering the scarce spectrum resources and unevenly distributed traffic demands, we investigate the resource allocation algorithms for ISTNs, where the beam-hopping (BH)-based satellite system [...] Read more.
The integrated satellite-terrestrial network (ISTN) provides a promising solution to achieve high-data-rate and ubiquitous connectivity in next-generation communication networks. Considering the scarce spectrum resources and unevenly distributed traffic demands, we investigate the resource allocation algorithms for ISTNs, where the beam-hopping (BH)-based satellite system and terrestrial systems share the same frequency band. Taking advantage of the scheduling flexibility of BH technology, the dynamical protection zones are constructed to avoid co-channel interference and improve the spectrum efficiency. Since both spectrum efficiency and user fairness are the key optimization indexes in practical systems, two resource allocation problems are formulated to maximize the weighted sum of capacity (MWSC) and maximize the minimum capacity-to-demand ratio (MMCDR) of ISTNs, respectively. By reformulating the problems as mixed-integer linear programming problems, optimal solutions are obtained. To reduce the computational complexity, two greedy suboptimal algorithms are proposed for the MWSC and MMCDR, respectively. The simulation results show that the proposed algorithms achieve higher spectrum efficiency and guarantee fairness between the satellite and terrestrial systems. It is also shown that both the greedy algorithms perform similarly to the optimal algorithms while having much lower complexity. Full article
(This article belongs to the Special Issue 6G Space-Air-Ground Communication Networks and Key Technologies)
Show Figures

Figure 1

31 pages, 830 KiB  
Review
ISAC towards 6G Satellite–Terrestrial Communications: Principles, Status, and Prospects
by Yang Gu, Tianheng Xu, Kai Feng, Yuling Ouyang, Wen Du, Xin Tian and Ting Lei
Electronics 2024, 13(7), 1369; https://doi.org/10.3390/electronics13071369 - 4 Apr 2024
Cited by 4 | Viewed by 5781
Abstract
With the evolution of fifth-generation (5G) to sixth-generation (6G) communication systems, the utilization of spectrum resources faces incremental challenges. Integrated sensing and communication (ISAC) technology, as a crucial element in 6G technology, is expected to enhance energy efficiency and spectrum utilization efficiency by [...] Read more.
With the evolution of fifth-generation (5G) to sixth-generation (6G) communication systems, the utilization of spectrum resources faces incremental challenges. Integrated sensing and communication (ISAC) technology, as a crucial element in 6G technology, is expected to enhance energy efficiency and spectrum utilization efficiency by integrating radar and communication signals, achieving environmental awareness, and enabling scene interconnection. Simultaneously, to realize the vision of seamless coverage in 6G, research on integrated satellite-terrestrial communication has been prioritized. To integrate the advantages, ISAC for integrated satellite–terrestrial networks (ISTNs) in 6G has emerged as a potential research direction. This paper offers an extensive overview of the present state of key technologies for ISAC and the development of ISTNs. Meanwhile, with a focus on the ISTN-oriented 6G ISAC system, several hotspot topics, including future application scenarios and key technological developments, are outlined and demonstrated. Full article
(This article belongs to the Special Issue Energy-Efficient Wireless Solutions for 6G/B6G)
Show Figures

Figure 1

19 pages, 1176 KiB  
Article
Constrained DRL for Energy Efficiency Optimization in RSMA-Based Integrated Satellite Terrestrial Network
by Qingmiao Zhang, Lidong Zhu, Yanyan Chen and Shan Jiang
Sensors 2023, 23(18), 7859; https://doi.org/10.3390/s23187859 - 13 Sep 2023
Cited by 3 | Viewed by 1700
Abstract
To accommodate the requirements of extensive coverage and ubiquitous connectivity in 6G communications, satellite plays a more significant role in it. As users and devices explosively grow, new multiple access technologies are called for. Among the new candidates, rate splitting multiple access (RSMA) [...] Read more.
To accommodate the requirements of extensive coverage and ubiquitous connectivity in 6G communications, satellite plays a more significant role in it. As users and devices explosively grow, new multiple access technologies are called for. Among the new candidates, rate splitting multiple access (RSMA) shows great potential. Since satellites are power-limited, we investigate the energy-efficient resource allocation in the integrated satellite terrestrial network (ISTN)-adopting RSMA scheme in this paper. However, this non-convex problem is challenging to solve using conventional model-based methods. Because this optimization task has a quality of service (QoS) requirement and continuous action/state space, we propose to use constrained soft actor-critic (SAC) to tackle it. This policy-gradient algorithm incorporates the Lagrangian relaxation technique to convert the original constrained problem into a penalized unconstrained one. The reward is maximized while the requirements are satisfied. Moreover, the learning process is time-consuming and unnecessary when little changes in the network. So, an on–off mechanism is introduced to avoid this situation. By calculating the difference between the current state and the last one, the system will decide to learn a new action or take the last one. The simulation results show that the proposed algorithm can outperform other benchmark algorithms in terms of energy efficiency while satisfying the QoS constraint. In addition, the time consumption is lowered because of the on–off design. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

34 pages, 45713 KiB  
Article
Design and Implementation of Semi-Physical Platform for Label Based Frame Switching in Integrated Satellite Terrestrial Networks
by Wei Zhou, Xing Jiang, Qingsong Luo, Shanguo Huang, Bingli Guo, Xiang Sun, Shaobo Li, Xiaochuan Tan, Mingyi Ma and Tianwen Fu
Appl. Sci. 2022, 12(13), 6674; https://doi.org/10.3390/app12136674 - 1 Jul 2022
Cited by 1 | Viewed by 2436
Abstract
With the explosion of traffic demand in recent years, the integration of satellite optical networks and terrestrial networks (ISTN) creates a promising networking solution for future low-latency, high-rate, and high-capacity communications. Owing to the high cost of deploying and maintaining a satellite optical [...] Read more.
With the explosion of traffic demand in recent years, the integration of satellite optical networks and terrestrial networks (ISTN) creates a promising networking solution for future low-latency, high-rate, and high-capacity communications. Owing to the high cost of deploying and maintaining a satellite optical network, it is critical to carefully design and plan the network to ensure the performance of the network. Thus, a semi-physical simulation platform based on software-defined networks (SDNs) is developed to simulate a satellite optical network and evaluate the performance of the proposed label-based advanced orbiting system (AOS) frame switching method that adheres to the Consultative Committee for Space Data Systems’ recommended standard (CCSDS). The semi-physical simulation platform has two major innovations: (1) adapting and integrating network protocols between the CCSDS and open system interconnect (OSI) reference models, particularly at the data link layer, and (2) the foundation for an SDN-based satellite optical network. In the control plane, real-time VxWorks Simulators serve as controllers to establish and manage various network protocols and the link manager protocol (LMP). Here, network protocols include open shortest path first (OSPF) for routing managing and controlling messages, constraint shortest path first–traffic engineering (CSPF-TE), and constraint-label distribution protocol (CR-LDP) for routing data services. LMP is used to assign and reserve satellite optical link resources. The performance of the architecture and protocols is evaluated via a semi-physical simulation platform. Full article
(This article belongs to the Collection New Trends in Optical Networks)
Show Figures

Figure 1

21 pages, 692 KiB  
Article
Partition-Based Joint Placement of Gateway and Controller in SDN-Enabled Integrated Satellite-Terrestrial Networks
by Kongzhe Yang, Bangning Zhang and Daoxing Guo
Sensors 2019, 19(12), 2774; https://doi.org/10.3390/s19122774 - 20 Jun 2019
Cited by 17 | Viewed by 3513
Abstract
The Integrated Satellite-Terrestrial Networks (ISTNs) with Software-Defined Networking (SDN) incorporated have become the emerging architecture and have attracted considerable attention recently. Therein, the joint gateway and controller placement problem is of fundamental significance for designing ISTNs with flexible and efficient management capabilities. Hence, [...] Read more.
The Integrated Satellite-Terrestrial Networks (ISTNs) with Software-Defined Networking (SDN) incorporated have become the emerging architecture and have attracted considerable attention recently. Therein, the joint gateway and controller placement problem is of fundamental significance for designing ISTNs with flexible and efficient management capabilities. Hence, how to achieve network reliability maximization with low network latency in the joint placement problem is worthy of in-depth study. In this paper, a network partition algorithm, Simulated Annealing Partition-based K-means (SAPKM), is proposed and analyzed for further ameliorating the problem. Experiments are performed on real network topologies to validate the effectiveness of our approach for the joint placement problem. Compared with the state-of-the-art existing works, numerical results show that SAPKM outperforms when deploying four or more controllers in terms of network reliability performance, network latency, and inter-plane latency with less than 2 ms to converge. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

Back to TopTop