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Abstract: To accommodate the requirements of extensive coverage and ubiquitous connectivity in 6G
communications, satellite plays a more significant role in it. As users and devices explosively grow,
new multiple access technologies are called for. Among the new candidates, rate splitting multiple
access (RSMA) shows great potential. Since satellites are power-limited, we investigate the energy-
efficient resource allocation in the integrated satellite terrestrial network (ISTN)-adopting RSMA
scheme in this paper. However, this non-convex problem is challenging to solve using conventional
model-based methods. Because this optimization task has a quality of service (QoS) requirement
and continuous action/state space, we propose to use constrained soft actor-critic (SAC) to tackle
it. This policy-gradient algorithm incorporates the Lagrangian relaxation technique to convert the
original constrained problem into a penalized unconstrained one. The reward is maximized while
the requirements are satisfied. Moreover, the learning process is time-consuming and unnecessary
when little changes in the network. So, an on–off mechanism is introduced to avoid this situation.
By calculating the difference between the current state and the last one, the system will decide to
learn a new action or take the last one. The simulation results show that the proposed algorithm
can outperform other benchmark algorithms in terms of energy efficiency while satisfying the QoS
constraint. In addition, the time consumption is lowered because of the on–off design.

Keywords: integrated satellite terrestrial network; rate splitting multiple access; energy efficiency;
constrained deep reinforcement learning; soft actor-critic

1. Introduction

As users and devices explosively grow in the next generation mobile communication
systems and Internet of Things (IoT), it is more difficult to provide ubiquitous and reliable
massive access with conventional terrestrial networks [1]. Since satellite communication
has greatly developed over the years, it is considered a promising solution as a complement
for terrestrial communications with its extensive coverage and continuous service [2].
However, it is still not enough to meet the demands with satellites alone; new multiple
access (MA) technologies are also called for [3].

In long-term evolution (LTE), orthogonal frequency division multiple access (OFDMA)
and singe carrier frequency division multiple access (SC-FDMA) are adopted to boost the
capacity in downlink and uplink, respectively. By assigning users orthogonal sub-carriers
or discrete Fourier transform (DFT) precoders, multiple access among them becomes possi-
ble. However, the orthogonality requirement limits their capacity. The massive machine
type communication (mMTC) in 5G and 6G cannot be supported by them. Several non-
orthogonal multiple access (NOMA) technologies are proposed to further improve the
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spectral efficiency. Among them, power domain NOMA (PD-NOMA) has been exten-
sively studied over the years. Different transmission powers are allocated based on users’
channel conditions. By utilizing the successive interference cancellation (SIC) technique,
multiple users could share the same frequency band and time slot, resulting in capacity
boost. Nonetheless, it requires user ordering and significant channel discrepancy for better
performance. The increase of users and devices also makes it more difficult and complex for
user paring, ordering and power allocation, causing performance deterioration. Recently,
a novel rate splitting multiple access (RSMA) has drawn a lot attention. It divides user’s
messages into a public part and a private part, assigning them corresponding precoders.
Users also share the same frequency and time resources. But it does not need user paring
and ordering or great channel differences to perform well. It has higher capacity compared
with OFDMA, SC-FDMA, and PD-NOMA with relatively low receiver complexity [4,5].

The idea of rate splitting was first presented in a single input single output (SISO)
system [6]. Over the years, it has been extended for multiple input single output (MISO)
and multiple input multiple output (MIMO) systems [7,8]. In the groundbreaking works
of rate splitting (RS), the authors thoroughly study this method in terms of sum-rate
theoretically; besides the obvious larger achievable rate region, the results prove that RS
not only significantly decrease the complexity of precoder design and user scheduling but
also exhibits robustness with imperfect channel state information (CSI) compared with
conventional MA schemes [7,8]. For the classical weighted sum-rate (WSR) maximization
in RSMA, usually this non-convex problem is converted to a convex weighted minimum
mean square error (WMMSE) to solve [9]. But recently, Ref. [10] has adopted a new deep
learning approach called deep unfolding to simplify and improve the WMMSE algorithm
in an integrated satellite terrestrial network (ISTN), while [11] proposes to use the block-
coordinate descent algorithm for an intelligent reflecting surface (IRS) aided system, both
of which could achieve a better performance. Another hot topic of RSMA is the max-
min fairness in a multi-group or multi-beam scenario. Reference [12] uses semi-definite
relaxation and a convex-concave procedure to attain better fairness. Another reference [13]
introduces LogSumExp approximation and a generalized power iteration framework for
beamforming. Lately, the application of RSMA for simultaneous wireless information and
power transfer (SWIPT) has gained more attention due to exponential energy consumption
growth. In a multigroup multicast system, the authors of [14] uses the successive convex
approximation (SCA) algorithm to minimize the transmission power.

Since the satellite is powered by solar panels, its power consumption cannot be
neglected. Even though we could adopt RSMA to increase the capacity of ISTN, it is also
crucial to complete the task with the lowest power possible. As for the energy efficiency
optimization for RSMA, some of the literature proposes SCA-based algorithms for this
problem [15,16]. However, these approaches are either too complex or only approximate to
optimal solutions. Deep reinforcement learning, on the other hand, is a model-free method
that can find the optimal solution with no need of prior knowledge. Additionally, the ability
to learn is considered a fundamental requirement in the next-generation communication
systems. Naturally, DRL is a hopeful candidate solution.

Using DRL for energy efficiency optimization in communications and other systems
has been researched over the years. These studies fall into two categories: one with “dis-
crete DRL” and one with “continuous DRL”. The former could only deal with discrete
action/state space problems, e.g., deep Q-network (DQN) and state action reward state
action (SARSA). However, most of the time, energy efficiency optimization is a continu-
ous problem. Therefore, to apply “discrete DRL” to it, the action/state space should be
discretized first. For example, Ref. [17] proposes to combine centralized DQN with multi-
agent DQN in a 5G cognitive heterogeneous network, Ref. [18] utilizes a SARSA-based
algorithm for ultra-dense networks, a multi-armed bandit RL is used for the energy-efficient
trajectory design of unmanned aerial vehicles (UAVs). The second kind of RL could tackle
continuous action/state space tasks, like deep deterministic policy gradient (DDPG) and
proximal policy optimization (PPO). So there is no discretization requirement in these
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schemes. Ref. [19] applies DDPG to jointly optimize computing and caching; however, the
constraints in it are simplified and not shown in the algorithm design. To allocate resources
for 5G radio access network (RAN), asynchronous advantage actor-critic (A3C) is exploited.
To satisfy the constraints, Ref. [20] uses many modules, which increases the complexity.

Besides DRL, other approaches—model-based or model-free—are also widely used
for energy efficiency optimization in various systems. In [21], the authors adopt supervised
machine learning to forecast traffic load and evaluate energy efficiency in Beyond 5G (B5G)
networks. In wireless sensor networks (WSNs), Ref. [22] proposes a reliable clustering and
routing algorithm considering different factors to save energy. The authors of [23] designed
a cluster-based hierarchical routing protocol forming minimum spanning trees among
communicating nodes, reducing energy wastage and prolonging the network lifetime
in WSNs.

Energy efficiency optimization problems in communication networks are always
limited by some conditions. Therefore, DRL, which could meet the constraints and tackle
continuous tasks, is needed. Fortunately, constrained DRL (CDRL) has been proposed for
this kind of problems. Generally, there are three main classes of CDRL:

1. Primal-dual approach incorporates Lagrangian relaxation to transform the original
constrained problem to an unconstrained dual problem [24,25];

2. Policy optimization approach directly uses a more trackable function to replace origi-
nal objective or constraint [26,27];

3. Penalty function approach designs an unconstrained problem by adding penalty in
the objective [28].

CDRL has been applied for network slicing recently. In [29], interior-point policy
optimization (IPO) is adopted while [30,31] utilize the soft actor-critic (SAC) method.
Another reference [32] gives an example of optimal power flow using constrained DDPG.

Nonetheless, there is no prior research on the energy efficiency optimization of RSMA
adopting CDRL. So we propose to use SAC with a Lagrangian relaxation technique to
improve the energy efficiency with the QoS constraint in ISTN. The contributions of our
work are summarized as follows:

• We formulate the constrained Markov decision process (CMDP) framework of en-
ergy efficiency optimization, presenting a dual unconstrained problem adopting
Lagrangian relaxation;

• We propose a constrained SAC algorithm whose objective function includes QoS
constraint and entropy as a penalty;

• An on–off mechanism is introduced to avoid unwanted learning process when little
changes in ISTN.

2. System Model
2.1. RSMA Architecture

To better understand how RSMA works, we use a k-user MIMO system to demonstrate
the process, as shown in Figure 1. First, all users’ messages are divided into two parts: public
and private parts, which would be

{
Mpub

1 , Mpub
2 , · · · , Mpub

k

}
and

{
Mpri

1 , Mpri
2 , · · · , Mpri

k

}
in the figure. Then, all the common messages are combined together to obtain one new
message Mpub whereas k private messages remain untouched. By encoding, we can obtain
k + 1 streams

{
spub, s1, · · · , sk

}
. Stream spub will be encoded again by a public precoder

wpub shared among all users. As for the private streams, each of them will be encoded by
its own precoder {w1, w2, · · · , wk} accordingly. Finally, by superimposition, we will get the
transmitted signal wpubspub + w1s1 + · · ·+ wksk.

At the receiver end, since the public precoder wpub is known to all users, they can
directly decode the signal to restore their public messages. Performing one-time successive
interference cancellation (SIC) and decoding, one can restore its own private message by
discarding all others’ private streams. After combination, the original message is obtained.
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According to reference [9], RSMA is the bridge that connects spacial division multiple
access (SDMA) and PD-NOMA. In SDMA, users are assigned with different beamforming
precoders. Multi-user interference is discarded as noise. The performance of SDMA heavily
depends on the orthogonality of users’ channels and the number of antenna.
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Figure 1. RSMA architecture.

In PD-NOMA, users are distinguished by different power. And in a multi-user system,
the k-th user needs to perform (k− 1) times SIC to restore its own message. That means
multi-user interference needs to be fully decoded. PD-NOMA’s performance highly relies
on the discrepancy of users’ channel gains and the perfect SIC operation.

Unlike these two extreme approaches, RSMA partially decodes the public stream and
partially discards the private streams interference. This design allows it to achieve larger
capacity. Moreover, the performance of RSMA depends on the precoder design and does
not need channels to be orthogonal or significantly different. Therefore, RSMA is less
limited than the other two. In addition, the one-time SIC in RSMA greatly reduces the
complexity at receiver end. The advantages of RSMA could be summarized as follows.

• It has a larger achievable rate region, which means it allows more connections;
• It has no requirements for users’ channel condition, so it could be applied to more scenarios;
• It does not need user pairing or ordering for SIC, which reduces the complexity

and delay;
• It only needs one-time SIC operation. Complexity is reduced again and the error

accumulation is avoided.
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2.2. Network Model

The integrated satellite terrestrial network we investigate is depicted in Figure 2. In
the downlink scenario, a satellite serves multiple users within its coverage. It could be a
low earth orbit (LEO) satellite, a medium earth orbit (MEO) satellite or a geosynchronous
(GEO) satellite. It is equipped with L antennas to provide extensive coverage. Each user
is equipped with a single antenna. In this network, the RSMA scheme is adopted for
multi-user transmission. Using different precoders, it can simultaneously serve multiple
users and reuse the entire spectrum effectively.

Satellite

U2

U1

Uk
… Gateway

Figure 2. Network model.

To better describe the link between satellite and terrestrial users in real life, we employ the
shadowed-Rician fading as our channel model [33]. Assume hk is the channel fading coefficient
between satellite and k-th user. The probability density function (PDF) is listed below:

f|hk |2
(x) = αke−βkx

1F1(mk; 1; δkx), (1)

where αk = (2bkmk/(2bkmk + Ωk))
mk /2bk, βk = 1/2bk, and δk = Ωk/2bk(2bkmk + Ωk).

Ωk and 2bk indicates the average power of line-of-sight (LoS) and multipath components,
respectively. mk is the Nakagami-m parameter with range [0, ∞) . 1F1(a; b; x) is the confluent
hypergeometric function given by

1F1(a; b; x) =
∞

∑
i=0

(a)i
(b)i

xi

i!
, (2)

where (a)i = Γ(a + i)/Γ(a) is the Pochhammer symbol and Γ(a) is the Gamma function [34].
According to [8], RSMA’s performance relies on the quality of CSI. In ISTN, the CSIs

of satellites are continuously collected to monitor network condition and adjust precoders.
However, perfect CSIs are unlikely to be obtained due to various reasons. A sensor could
be introduced to assist CSI collection, but its placement will affect the results. Several
papers [35–37] have studied this problem and proposed various algorithms. In this paper,
for simplicity, we assume CSIs are acquired by terrestrial terminals.

The errors in CSI have various sources, such as Doppler shift [38] and satellite attitude
dynamics [39,40]. Taking all these factors into account will cause rapid expansion of state
space in DRL, which will lead to unstable learning and incapability to converge. Fortu-
nately, the influence of these factors can be reflected in CSI. To achieve a tradeoff between
complexity and accuracy, we add noise sampled from complex Gaussian distribution into
the channel to simulate errors.
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The satellite in this network divides the messages for all users and encodes them with
RSMA precoders. After broadcasting, terrestrial users use a shared public precoder and their
own private ones to restore the messages for them. To maximize the capacity with minimum
power consumption, we will investigate the energy efficiency optimization in the next section.

3. Problem Formulation

As mentioned before, we define the vector of user streams as s ,
[
spub, s1, · · · , sK

]
∈

CK+1 and the precoder matrix is w ,
[
wpub, w1, · · · , wK

]
∈ CL×(K+1). The final linearly

precoded signal that satellite broadcasts to K users is

x = ws = wpubspub +
K

∑
k=1

wksk, (3)

where wpub, wk ∈ CL are used to execute simultaneous downlink transmissions. The
received signal has the following form:

y = hHx + n, (4)

where h = [h1, h2, · · · , hK] is the downlink channel matrix, n ∼ CN (0, IK) is the addi-
tive white Gaussian noise (AWGN) vector, which is normalized for brevity. For better
understanding, we take user k as an example, its received signal will be

yk = hH
k wpubspub + hH

k wksk + hH
k ∑

i 6=k
wisi + nk, (5)

where item hH
k ∑i 6=k wisi is the multi-user interference and nk is the noise.

Without loss of generality, we assume the power of users’ streams are normalized as
well, which is E

[
ssH] = I. This will help us to obtain simpler and clearer mathematical

expressions. Therefor, the SINR of the public part of the signal for user k is

γ
pub
k =

∣∣∣hH
k wpub

∣∣∣2
∑K

i=1
∣∣hH

i wi
∣∣2 + 1

. (6)

Usually, we can now acquire the rate with Shannon’s formula. But in this scenario, we
want to guarantee that all K users could successfully receive the signal. That means the
rate of the public part of the signal should not exceed the user with lowest public part rate,
which yields the following equation:

Rpub
k = min

k

{
log2

(
1 + γ

pub
k

)}
. (7)

Similarly, the SINR of private part of the signal for user k will be

γ
pri
k =

∣∣∣hH
k wpub

∣∣∣2
∑K

i 6=k
∣∣hH

i wi
∣∣2 + 1

. (8)

For the private part of the signal, user k will discard others’ private streams. So there
is no rate requirement like the public part. The rate of private part of the signal for user k is

Rpri
k = log2

(
1 + γ

pri
k

)
. (9)

Now we can get the final rate of user k, which is

Rk = Rpub
k + Rpri

k . (10)
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The total power consumption of the broadcast signal is |wpubspub|2 + ∑k |wksk|2. Since
we have normalized the power of user streams, we can obtain the power consumption as
tr
(
wwH), in which tr(·) is the trace of a matrix. By the definition of energy efficiency, the

problem we aim to solve is given as

max
w

EE =
∑K

k=1 Rk

tr(wwH) + Pc
. (11)

s.t. tr
(

wwH
)
≤ Pt, (12)

Rk ≥ Rth, (13)

where Pc is the circuit power consumed in the satellite, Pt is the maximum transmission
power of the satellite and Rth is the required minimum rate.

Equation (11) is the sum energy efficiency in the network. Constraint (12) is the power
limit, indicating that the transmit power cannot exceed the maximum power. Constraint (13)
is the QoS constraint to guarantee successful transmission. Since this problem is non-convex
and NP-hard, conventional approaches use SCA-based methods to approximate the optimal
solution. However, the complexities of these approaches are very high, and the optimal
solution sometimes cannot be obtained. So we consider adopting a model-free DRL method
for this problem.

To satisfy (12), we can simply use the projection operation to limit the precoders, which
can be expressed as:

Proj(w) =

{
w if tr

(
wwH) ≤ Pt,

w/‖w‖ otherwise.
(14)

Nonetheless, Constraint (13) is difficult to incorporate in a conventional DRL algorithm.
Naturally, we want to adopt constrained DRL to tackle this problem, which utilizes different
methods to satisfy the constraint. As the soft actor-critic algorithm has shown excellent
performance and has been able to deal with continuous action/state space tasks, we
combine it with Lagrangian relaxation technique to optimize the energy efficiency.

4. Constrained SAC Algorithm
4.1. Constrained Markov Decision Process Formulation

In a normal DRL framework, the problem should be first defined by a turple (S ,A, P, r)
to solve, which consists of state space S , action space A, transition probability P and
reward r. Similarly, a constrained DRL also needs this turple but with an extra cost
function C. So, we give the following definitions.

State space is a set of representations of the environment observed by the agent. These
observations have all the relevant information the agent needs to make a decision. In the
ISTN, the SINRs, rates and energy efficiency can be calculated according to the channel
fading coefficients, thus, we select them as the state. The current state space is defined as:

s(t) =
{

h(t)1 , h(t)2 , · · · , h(t)K

}
. (15)

Action space is a set of all valid actions of choices available to the agent. In this
scenario, precoders are allocated to users to calculate energy efficiency with channel fading
coefficients. So the current action space is given as

a(t) = {w}, (16)

where w is defined in Section 3.
Reward is a feedback from the environment based on the last action that agent took.

It utilizes this feedback to improve its action policy. Usually, we can directly use energy
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efficiency as a reward; however, the QoS constraint cannot be incorporated in this case.
Therefore, we introduce the Lagrangian relaxation method to convert the original problem
into an unconstrained one.

According to references [41,42], the following constrained optimization

max
x

f (x). (17)

s.t. gi(x) ≥ 0, (18)

is equivalent to the problem

min
λ>0

max
x

f̂ (x, λ, ρ) = f (x) + ∑
i

λigi(x), (19)

where f̂ (x, λ) is the Lagrangian relaxed form of original f (x). The Lagrangian multiplier
λi adjusts the relative importance of constraint gi(x), which is called a cost function as well,
against the objective function. Then, with the following equations at the t-th iteration, it
can be gradually updated.

λ
(t+1)
i = λ

(t)
i + µλgi

(
x(t)
)

, (20)

where µλ is the learning rate of the Lagrangian multiplier.
With the above information, the current instantaneous reward in Lagrangian relaxed

form is defined as:

r
(

s(t), a(t)
)
= EE +

K

∑
k=1

λ
(t)
k

(
R(t)

k − Rth
)

, (21)

in which the cost function is denoted as c(t)k = R(t)
k − Rth. The reward will decline when

the QoS constraint is not satisfied.

4.2. The Proposed Constrained SAC Algorithm

Standard SAC is a policy gradient approach which uses the actor network to evaluate
the policy and critic network to improve the policy. Additionally, the entropy of the policy
is used as a penalty to improve its exploration, which yields fast convergence speed [43].
The maximum objective with entropy in it could be achieved when the optimum policy is
found, which can be expressed as:

π∗ = arg max
π

T

∑
t=0

Es(t),a(t)

[
r
(

s(t), a(t)
)
+ µπH

(
π
(

a(t)
∣∣∣s(t)))], (22)

where µπ is the temperature parameter that regulates the relative importance of the entropy,
which could increase the variance of the policy distribution so that more actions are
available to be chosen. The Shannon entropy of the policy is defined as:

H
(

π
(

a(t)
∣∣∣s(t))) = −∑

a(t)
π
(

a(t)
∣∣∣s(t)) log π

(
a(t)
∣∣∣s(t)). (23)

The architecture of the proposed constrained SAC is illustrated in Figure 3. As shown
in the picture, mainly three different components with five neural networks are used in
this scheme, which are elaborated below.
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Figure 3. Architecture of constrained SAC.

To evaluate the soft state value, a deep neural network (DNN) with a target network is
adopted, which are represented by parameters ψ and ψ̄, respectively. The soft state value is
used for soft Q-value approximation, both of which are utilized to evaluate received return
in the future and are defined as:

V
(

s(t)
)
= Ea(t)∼π

[
Q
(

s(t), a(t)
)
− log π

(
a(t)
∣∣∣s(t))], (24)

Q
(

s(t), at

)
= r
(

s(t), at

)
+ ρEs(t+1)∼P

[
V
(

s(t+1)
)]

, (25)

where ρ is the discount factor. With the objective and its gradient below, we can update the
soft value network using the gradient descent method. This network is trained to minimize
the square residual error with a target network to stabilize the training.

JV(ψ) = Es(t)

[
1
2

(
Vψ

(
s(t)
)
−Eat

[
Qθ

(
s(t), a(t)

)
− log πφ

(
a(t)
∣∣∣s(t))])2

]
, (26)

∇JV(ψ) = ∇ψVψ

(
s(t)
)[

Vψ

(
s(t)
)
−Qθ

(
s(t), a(t)

)
+ log πφ

(
a(t)
∣∣∣s(t))]. (27)

The soft Q-value is estimated by double soft Q-value network. The two-Q-network
design is meant to avoid overestimation. Parameters in this network could be updated by
minimizing the soft Bellman residual. The objective and its gradient are expressed as:

JQ(θ) = Es(t),a(t)

[
1
2

(
Qθ

(
s(t), a(t)

)
−
(

r
(

s(t), a(t)
)
+ ρEs(t)∼P

[
Vψ̄

(
s(t+1)

)]))2
]

, (28)
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∇JQ(θ) = ∇θQθ

(
s(t), a(t)

)[
Qθ

(
s(t), a(t)

)
− r
(

s(t), a(t)
)
− ρVψ̄

(
s(t+1)

)]
. (29)

Finally, the policy network provides the action for agent based on the optimal policy it
finds. By minimizing the Kullback–Leibler (KL) divergence between the policy and soft
Q-value, the parameters could be learned. The objective and its gradient are listed below.

Jπ(φ) = Es(t),a(t)

[
log πφ

(
a(t)
∣∣∣s(t))−Qθ

(
s(t), a(t)

)]
, (30)

∇Jπ(φ) = ∇φπφ

(
a(t)
∣∣∣s(t))+ [∇a(t) log πφ

(
a(t)
∣∣∣s(t))−∇a(t)Qθ

(
s(t), a(t)

)]
∇φ fφ

(
εt; s(t)

)
, (31)

where a(t) = fφ

(
εt; s(t)

)
is the reparameterization, which could lower the variance esti-

mation. εt is an input noise sampled from Gaussian distribution. The update process of
λ could also be realized by neural networks; however, this will slow the learning process
and destablize the network. So, we use the gradient ascend method for the update.

Moreover, since the learning process is time-consuming, if CSI changes little in the
network, it is wasteful to learn a new action that almost equals to the last one. So we
introduce an on–off mechanism to avoid unnecessary learning. When the difference
between the current state and the last state is small enough, we will adopt the last action
instead of learning a new one. With all the information above, we present our constrained
SAC in Algorithm 1.

Algorithm 1: Constrained SAC algorithm.
1: initialize network parameters: ψ, θ, φ
2: initialize Lagrangian multiplier and its learning rate, temperature parameter and

discount factor: λ, µλ, µπ , ρ
3: empty replay memory D, initialize last state s̄ = 0 and initialize last action ā = 0
4: copy parameter to target network: ψ̄← ψ
5: for each episode (t = 1, 2, · · · , T) do
6: observe environment s(t)

7: compute the difference between s(t) and s̄: ∆ =
∣∣∣s(t) − s̄

∣∣∣.
8: if ∆ is greater than the threshold then
9: sample action a(t) from policy network: a(t) ∼ πφ

(
·
∣∣∣s(t))

10: set s̄ = s(t) and ā = a(t)

11: else
12: take action a(t) = ā
13: end if
14: calculate reward according to Equation (21)
15: update replay memory: D ← D ∪

(
s(t), a(t), r, s(t+1), c(t)k

)
16: if it is time to update then
17: sample a mini batch from D.
18: update ψ via stochastic gradient ascent on (27)
19: update θ via stochastic gradient ascent on (29)
20: update φ via stochastic gradient ascent on (31)
21: update λ according to (20)
22: update ψ̄ by ψ̄← τψ + (1− τ)ψ̄
23: end if
24: end for



Sensors 2023, 23, 7859 11 of 19

5. Simulation Results

In order to verify the performance of the proposed constrained SAC algorithm, we test
it in various scenarios with different algorithms, including a DDPG approach incorporating
penalty as constraint in its reward function, unconstrained SAC, and conventional SCA-
based algorithm.

5.1. Simulation Parameters

In ISTN, multiple users are served by an LEO satellite within its coverage. The free
space loss coefficient is given as η = (1/4 f πd), in which f and d are the frequency and
distance between satellite and user.

The neural networks (NNs) in the proposed algorithm all consist of three fully con-
nected hidden layers with ReLU as the activation function and Adam optimizer. The first
two hidden layers of NN in the soft value network has 64 neurons while the last layer has
1 neuron. The hidden layers of NNs in the policy network and the soft Q network all have
64 neurons. The learning rate of the Adam optimizer is 10−3 while the update rate of target
networks is 0.005. Their loss functions are given in Equations (21), (22) and (27), respectively.
Replay memory size and batch size are 200 and 32, respectively, and the episode is 5000 with
200 timestamps. Since all users are equally “important” in the ISTN, their QoS constraints
contribute to the reward equally as well. So, we initialize the Lagrangian multipliers to
1. The initial value of the learning rate of the Lagrangian multiplier is usually small. So
we set it to be 10−3. The tuning of them could be performed by introducing additional
NNs with different optimizers; however, we fix their values to avoid extra complexity. The
parameters are listed in Table 1.

Table 1. Simulation parameters.

Parameter Value Note

b 0.158 Average power of multi-path component

Ω 1.29 Average power of LoS component

m 19.4 Nakagami-m parameter

f 12 GHz Satellite frequency

d 1000 km Distance between satellite and users

K 2, 3, 4, 5 Number of users

Pt 40 W Transmission power of satellite

Pc 5 W Circuit power

∆ 0.1 Difference between last state and current state

Rth 4 bps/Hz Rate constraint

ρ 0.98 Discount factor

λ 1 Lagrangian multiplier

µλ 10−3 Learning rate of λ

µπ 0.2 Temperature parameter for entropy

5.2. Results and Discussion

We evaluate the average reward of constrained SAC with different users, which is de-
picted in Figure 4. Clearly, it converges in all four scenarios around 200 to 300 episodes, and
its average reward increases as users grow in the ISTN. Since we initialize the Lagrangian
multiplier as 1 and the rate constraint as 4. The start points of four lines are −8, −12,
−16 and −20, respectively. Two things need to be noted. The first is that the fluctuation
becomes greater when users grow. The reason for this is that when more users served in the
network, the action space becomes larger, making it more difficult to design the precoders
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for each user. Another thing is that the gap between two lines shrinks as users increase.
Given the transmission power of the satellite, the achievable rate of each user will slightly
decrease when more users join the network, resulting in slowing the growth speed of the
average reward.
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Figure 4. Average reward of constrained SAC with different users.

The energy efficiency performance of constrained SAC with different users is shown
in Figure 5. We can see that it shares some similarities with Figure 4, such as the greater
fluctuation and smaller gap with more users. The reasons are the same—more users enlarge
the action space. Since energy efficiency is the reward without constraint, the start points
of these four lines are all 0.
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Figure 5. Energy efficiency of constrained SAC with different users.

Next, we verify whether the rate constraint is satisfied with the proposed algorithm.
In Figure 6, we can see that with different users, constrained SAC meets all the demands.
For clarity, we add four straight lines to indicate the rate constraints in four scenarios. The
capacity generated by the proposed algorithm all exceed the constraints. With these three
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results, the constrained SAC can maximize the energy efficiency under the rate constraint.
It provides an alternative solution for constrained optimization problem.
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Figure 6. Capacity of constrained SAC with different users.

To evaluate the performance of constrained SAC (denoted as CSAC in the figures) with
other benchmark algorithms, we choose the original SAC with no constraint and DDPG
incorporating constraint into its reward function (denoted as DDPG in the figures) [44].
The existing model-based SCA optimization (denoted as SCA in the figures) is compared
with these model-free DRL methods as well [15,16].

r(t)DDPG = EE
(

1− η(t)
)

, (32)

where η(t) is the penalty defined as

η(t) =
1
K

K

∑
i=1

I
(

R(t)
k − Rth

)
, (33)

in which I(·) is a indicator function given by

I(x) =

{
1 x < 0
0 x ≥ 0

. (34)

Whenever the rate is lower than the threshold, the reward of DDPG will be penalized.
Therefore, to achieve the maximum reward, the rate will meet the requirement.

In the three users scenario, since the original SAC is unconstrained, this means its
reward is the energy efficiency. Therefore, it looks like a straight line compared with the
other two algorithms that have a larger reward in Figure 7. Constrained DDPG, however,
uses the constraint as penalty in its reward function, showing a similar look to constrained
SAC. But it is obvious that its convergence speed is slower. The reason for this is that
constrained SAC has entropy in the reward function and noise in its action for more
exploration, which will eventually improve the convergence speed. Therefore, CSAC has a
better exploration performance than DDPG, which only adds noise in the action. And the
reward DDPG achieves is a bit lower than that of our algorithm.
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Figure 7. Average reward with different algorithms.

The energy efficiency performance comparison is depicted in Figure 8. Original SAC
has the lowest performance because its rate requirement cannot be satisfied. DDPG once
again presents relatively slow convergence speed. Its energy efficiency is higher than
original SAC but lower than constrained SAC. SCA converges after five iterations. Its
energy efficiency is even lower than DDPG, demonstrating that DRL could achieve better
performance than the model-based optimization approach without any prior knowledge.
However, unlike the “black-box” characteristic of DRL, SCA has more explicit expres-
sion. CSAC outperforms the other three with the highest performance, which validates
its effectiveness.
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Figure 8. Energy efficiency with different algorithms.

We also compare the capacities of four algorithms to check if the constraint satisfied.
In Figure 9, the straight line represents the capacity requirement in the three users scenario,
which is 12 bps/Hz. CSAC, DDPG, and SCA meet the capacity requirement with their
different approaches. Original SAC, on the other hand, fails to satisfy the constraint, even
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though its fluctuation goes beyond the straight line in rare cases. CSAC achieves the highest
capacity among them, which results in the highest energy efficiency in Figure 8.
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Figure 9. Capacity with different algorithms.

We investigate the effect of the on–off mechanism. In Figure 10, we vary thresholds to
observe the energy efficiency change of the three algorithms. As the threshold increases, it
is more likely that the last action will be taken instead of finding a new one. Consequently,
the energy efficiency will decrease as the action does not perfectly apply to the new state.
According to [9], when the strength difference of two channels is 0.3, additional 5 dB
loss will be introduced. Although less learning process with a bigger threshold will cost
less time, the tradeoff between time cost and performance should be considered carefully.
Normally, the threshold needs to be less than 0.3, or it will deteriorate the capacity and
energy efficiency.
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Figure 10. Energy efficiency with different on–off mechanism thresholds.
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Figure 11 shows the time cost performance of three algorithms. All of their time
consumption is lowered when adopting an on–off mechanism because some of the learning
process is substituted by the actions from the last states. Among them, the original SAC
has the lowest time consumption because it does not need to compute the Lagrangian
multiplier or penalty. DDPG has a simpler architecture and constraint in its reward function
than CSAC, thus the lower time cost.
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Figure 11. Average time cost per execution with different on–off mechanism thresholds.

Finally, the energy efficiency performance of CSAC and DDPG with different constraint
requirements is illustrated in Figure 12. As the rate constraint grows, it is more difficult
for CSAC and DDPG to find the suitable precoders, so their energy efficiency declines.
However, the penalty design in DDPG is more sensitive to requirement change, and it
dropps faster than CSAC.
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Figure 12. Energy efficiency with different constraint requirements.
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6. Conclusions

We investigate the energy efficiency optimization of rate splitting multiple access in
an integrated satellite terrestrial network, where multiple users are served by a satellite
with a QoS constraint. This problem is non-convex and NP-hard; therefore, we adopt
a soft actor-critic deep reinforcement learning approach as it can deal with continuous
state/action space tasks. To satisfy the QoS constraint, the Lagrangian relaxation technique
is incorporated to convert the original problem into a constrained one. Also, an on–off
mechanism is introduced to avoid frequent unnecessary learning processes if the state
changes little. The simulation results validate that the proposed constrained SAC algorithm
achieves a better performance while meeting the QoS requirement comparing with other
algorithms in terms of convergence speed and energy efficiency. Time cost is reduced as well
when the on–off mechanism is adopted. Future work will focus on CSAC improvement,
such as exploration and sample efficiency, and on RSMA in a more complicated system like
integrated space air terrestrial networks and satellite-based sensor networks.
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