Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = IMGT Collier de Perles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
42 pages, 5431 KB  
Article
Human Gm, Km, and Am Allotypes: WHO/IMGT Nomenclature and IMGT Unique Numbering for Immunoinformatics and Therapeutical Antibodies
by Marie-Paule Lefranc and Gérard Lefranc
BioMedInformatics 2023, 3(3), 649-690; https://doi.org/10.3390/biomedinformatics3030044 - 9 Aug 2023
Cited by 8 | Viewed by 7006
Abstract
Human immunoglobulin allotypes are allelic antigenic determinants (or “markers”) determined serologically, classically by hemagglutination inhibition, on the human immunoglobulin (IG) or antibody heavy and light chains. The allotypes have been identified on the gamma1, gamma2, gamma3, and alpha2 heavy chains (designated as G1m, [...] Read more.
Human immunoglobulin allotypes are allelic antigenic determinants (or “markers”) determined serologically, classically by hemagglutination inhibition, on the human immunoglobulin (IG) or antibody heavy and light chains. The allotypes have been identified on the gamma1, gamma2, gamma3, and alpha2 heavy chains (designated as G1m, G2m, G3m, and A2m allotypes, respectively) and on the kappa light chain (Km allotypes). Gm and Am allotypes have been one of the most powerful tools in population genetics, as they are inherited in fixed combinations, or Gm–Am haplotypes, owing to the linkage of the human IGHC genes in the IGH locus on chromosome 14. They have been very instrumental in molecular characterization of the human IGHC genes (gene polymorphisms or alleles, and IG heavy-chain structure in domains) and of the IGH locus (IGHC gene order, gene conversion, and copy number variation (CNV)). They represent a major system for understanding immunogenicity of the polymorphic IG chains in relation to amino acid and conformational changes. The WHO/IMGT allotype nomenclature and the IMGT unique numbering for constant (C) domain bridge Gm–Am and Km alleles to IGHC and IGKC gene alleles and structures and, by definition, to IG chain immunogenicity, opening the way for immunoinformatics of personalized therapeutic antibodies and engineered variants. Full article
(This article belongs to the Section Applied Biomedical Data Science)
Show Figures

Figure 1

112 pages, 28087 KB  
Review
Immunoglobulins or Antibodies: IMGT® Bridging Genes, Structures and Functions
by Marie-Paule Lefranc and Gérard Lefranc
Biomedicines 2020, 8(9), 319; https://doi.org/10.3390/biomedicines8090319 - 31 Aug 2020
Cited by 55 | Viewed by 19203
Abstract
IMGT®, the international ImMunoGeneTics® information system founded in 1989 by Marie-Paule Lefranc (Université de Montpellier and CNRS), marked the advent of immunoinformatics, a new science at the interface between immunogenetics and bioinformatics. For the first time, the immunoglobulin (IG) or [...] Read more.
IMGT®, the international ImMunoGeneTics® information system founded in 1989 by Marie-Paule Lefranc (Université de Montpellier and CNRS), marked the advent of immunoinformatics, a new science at the interface between immunogenetics and bioinformatics. For the first time, the immunoglobulin (IG) or antibody and T cell receptor (TR) genes were officially recognized as ‘genes’ as well as were conventional genes. This major breakthrough has allowed the entry, in genomic databases, of the IG and TR variable (V), diversity (D) and joining (J) genes and alleles of Homo sapiens and of other jawed vertebrate species, based on the CLASSIFICATION axiom. The second major breakthrough has been the IMGT unique numbering and the IMGT Collier de Perles for the V and constant (C) domains of the IG and TR and other proteins of the IG superfamily (IgSF), based on the NUMEROTATION axiom. IMGT-ONTOLOGY axioms and concepts bridge genes, sequences, structures and functions, between biological and computational spheres in the IMGT® system (Web resources, databases and tools). They provide the IMGT Scientific chart rules to identify, to describe and to analyse the IG complex molecular data, the huge diversity of repertoires, the genetic (alleles, allotypes, CNV) polymorphisms, the IG dual function (paratope/epitope, effector properties), the antibody humanization and engineering. Full article
(This article belongs to the Special Issue Immunoglobulins in Inflammation)
Show Figures

Figure 1

21 pages, 2380 KB  
Review
IMGT® and 30 Years of Immunoinformatics Insight in Antibody V and C Domain Structure and Function
by Marie-Paule Lefranc and Gérard Lefranc
Antibodies 2019, 8(2), 29; https://doi.org/10.3390/antib8020029 - 11 Apr 2019
Cited by 28 | Viewed by 12660
Abstract
At the 10th Human Genome Mapping (HGM10) Workshop, in New Haven, for the first time, immunoglobulin (IG) or antibody and T cell receptor (TR) variable (V), diversity (D), joining (J), and constant (C) genes were officially recognized as ‘genes’, as were the conventional [...] Read more.
At the 10th Human Genome Mapping (HGM10) Workshop, in New Haven, for the first time, immunoglobulin (IG) or antibody and T cell receptor (TR) variable (V), diversity (D), joining (J), and constant (C) genes were officially recognized as ‘genes’, as were the conventional genes. Under these HGM auspices, IMGT®, the international ImMunoGeneTics information system®, was created in June 1989 at Montpellier (University of Montpellier and CNRS). The creation of IMGT® marked the birth of immunoinformatics, a new science, at the interface between immunogenetics and bioinformatics. The accuracy and the consistency between genes and alleles, sequences, and three-dimensional (3D) structures are based on the IMGT Scientific chart rules generated from the IMGT-ONTOLOGY axioms and concepts: IMGT standardized keywords (IDENTIFICATION), IMGT gene and allele nomenclature (CLASSIFICATION), IMGT standardized labels (DESCRIPTION), IMGT unique numbering and IMGT Collier de Perles (NUMEROTATION). These concepts provide IMGT® immunoinformatics insights for antibody V and C domain structure and function, used for the standardized description in IMGT® web resources, databases and tools, immune repertoires analysis, single cell and/or high-throughput sequencing (HTS, NGS), antibody humanization, and antibody engineering in relation with effector properties. Full article
(This article belongs to the Special Issue Structure and Function of Antibodies)
Show Figures

Figure 1

38 pages, 80077 KB  
Review
Immunoglobulins: 25 Years of Immunoinformatics and IMGT-ONTOLOGY
by Marie-Paule Lefranc
Biomolecules 2014, 4(4), 1102-1139; https://doi.org/10.3390/biom4041102 - 16 Dec 2014
Cited by 29 | Viewed by 10597
Abstract
IMGT®, the international ImMunoGeneTics information system® (CNRS and Montpellier University) is the global reference in immunogenetics and immunoinformatics. By its creation in 1989, IMGT® marked the advent of immunoinformatics, which emerged at the interface between immunogenetics and bioinformatics. IMGT [...] Read more.
IMGT®, the international ImMunoGeneTics information system® (CNRS and Montpellier University) is the global reference in immunogenetics and immunoinformatics. By its creation in 1989, IMGT® marked the advent of immunoinformatics, which emerged at the interface between immunogenetics and bioinformatics. IMGT® is specialized in the immunoglobulins (IG) or antibodies, T cell receptors (TR), major histocompatibility (MH), and IgSF and MhSF superfamilies. IMGT® has been built on the IMGT-ONTOLOGY axioms and concepts, which bridged the gap between genes, sequences and three-dimensional (3D) structures. The concepts include the IMGT® standardized keywords (identification), IMGT® standardized labels (description), IMGT® standardized nomenclature (classification), IMGT unique numbering and IMGT Colliers de Perles (numerotation). IMGT® comprises seven databases, 15,000 pages of web resources and 17 tools. IMGT® tools and databases provide a high-quality analysis of the IG from fish to humans, for basic, veterinary and medical research, and for antibody engineering and humanization. They include, as examples: IMGT/V-QUEST and IMGT/JunctionAnalysis for nucleotide sequence analysis and their high-throughput version IMGT/HighV-QUEST for next generation sequencing, IMGT/DomainGapAlign for amino acid sequence analysis of IG domains, IMGT/3Dstructure-DB for 3D structures, contact analysis and paratope/epitope interactions of IG/antigen complexes, and the IMGT/mAb-DB interface for therapeutic antibodies and fusion proteins for immunological applications (FPIA). Full article
(This article belongs to the Special Issue Immunoglobulin)
Show Figures

Figure 1

Back to TopTop