Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = I-doping

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 10047 KiB  
Article
idopNetwork Analysis of Salt-Responsive Transcriptomes Reveals Hub Regulatory Modules and Genes in Populus euphratica
by Shuang Wu, Wenqi Pan and Ang Dong
Int. J. Mol. Sci. 2025, 26(9), 4091; https://doi.org/10.3390/ijms26094091 - 25 Apr 2025
Viewed by 346
Abstract
Euphrates poplar (Populus euphratica) is known as a system model to study the genomic mechanisms underlying the salt resistance of woody species. To characterize how dynamic gene regulatory networks (GRNs) drive the defense response of this species to salt stress, we [...] Read more.
Euphrates poplar (Populus euphratica) is known as a system model to study the genomic mechanisms underlying the salt resistance of woody species. To characterize how dynamic gene regulatory networks (GRNs) drive the defense response of this species to salt stress, we performed mRNA sequencing of P. euphratica roots under short-term (ST) and long-term (LT) salt stress treatments across multiple time points. Comparisons of these transcriptomes revealed the diverged gene expression patterns between the ST and LT treated samples. Based on the informative, dynamic, omnidirectional, and personalized networks model (idopNetwork), inter- and intra-module networks were constructed across different time points for both the ST and LT groups. Through the analysis of the inter-module network, we identified module 4 as the hub, containing the largest number of genes. Further analysis of the gene network within module 4 revealed that gene XM_011048240.1 had the most prominent interactions with other genes. Under short-term salt stress, gene interactions within the network were predominantly promoted, whereas under long-term stress, these interactions shifted towards inhibition. As for the gene ontology (GO) annotation of differentially expressed genes, the results suggest that P. euphratica may employ distinct response mechanisms during the early and late stages of salt stress. Taking together, these results offer valuable insights into the regulatory mechanism involved in P. euphratica’s stress response, advancing our understanding of complex biological processes. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

16 pages, 4596 KiB  
Article
Framing of Poly(arylene-ethynylene) around Carbon Nanotubes and Iodine Doping for the Electrochemical Detection of Dopamine
by Jose Paul, Md Moniruzzaman and Jongsung Kim
Biosensors 2023, 13(3), 308; https://doi.org/10.3390/bios13030308 - 22 Feb 2023
Cited by 14 | Viewed by 2722
Abstract
Dopamine (DA), an organic biomolecule that acts as both a hormone and a neurotransmitter, is essential in regulating emotions and metabolism in living organisms. The accurate determination of DA is important because it indicates early signs of serious neurological disorders. Covalent organic frameworks [...] Read more.
Dopamine (DA), an organic biomolecule that acts as both a hormone and a neurotransmitter, is essential in regulating emotions and metabolism in living organisms. The accurate determination of DA is important because it indicates early signs of serious neurological disorders. Covalent organic frameworks (COFs) and metal–organic frameworks (MOFs) have received considerable attention in recent years as promising porous materials with an unrivaled degree of tunability for electrochemical biosensing applications. This study adopted a solvothermal strategy for the synthesis of a conjugated microporous poly(arylene ethynylene)-4 (CMP-4) network using the Sonagashira–Hagihara cross-coupling reaction. To increase the crystallinity and electrical conductivity of the material, CMP-4 was enveloped around carbon nanotubes (CNTs), followed by iodine doping. When used as an electrochemical probe, the as-synthesized material (I2-CMP-CNT-4) exhibited excellent selectivity and sensitivity to dopamine in the phosphate-buffered solution. The detection limits of the electrochemical sensor were 1 and 1.7 μM based on cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Full article
(This article belongs to the Special Issue Construction of Biosensors Using Nano- and Microtechnology)
Show Figures

Figure 1

20 pages, 4328 KiB  
Article
Structural Characterization and Anti-Nonalcoholic Fatty Liver Effect of High-Sulfated Ulva pertusa Polysaccharide
by Yuzhou Wan, Lin Liu, Bo Zhang, Shaopeng Wang, Xiaoqian Wang, Kexu Chen, Yuxi Li, Tingting Zhao and Huimin Qi
Pharmaceuticals 2023, 16(1), 62; https://doi.org/10.3390/ph16010062 - 31 Dec 2022
Cited by 6 | Viewed by 2667
Abstract
The high-sulfated derivative of Ulva pertusa polysaccharide (HU), with unclear structure, has better anti-hyperlipidmia activity than U pertusa polysaccharide ulvan (U). In this study, we explore the main structure of HU and its therapeutic effect against nonalcoholic fatty liver disease (NAFLD). The main [...] Read more.
The high-sulfated derivative of Ulva pertusa polysaccharide (HU), with unclear structure, has better anti-hyperlipidmia activity than U pertusa polysaccharide ulvan (U). In this study, we explore the main structure of HU and its therapeutic effect against nonalcoholic fatty liver disease (NAFLD). The main structure of HU was elucidated using FT-IR and NMR (13C, 1H, COSY, HSQC, HMBC). The anti-NAFLD activity of HU was explored using the high-fat diet mouse model to detect indicators of blood lipid and liver function and observe the pathologic changes in epididymal fat and the liver. Results showed that HU had these main structural fragments: →4)-β-D-Glcp(1→4)-α-L-Rhap2,3S(1→; →4)-α-L-Rhap3S(1→4)-β-D-Xylp2,3S(1→; →4)-α-L-Rhap3S(1→4)-β-D-Xylp(1→; →4)-α-L-IdopA3S(1→4)-α-L-Rhap3S(1→; →4)-β-D-GlcpA(1→3)-α-L-Rhap(1→; →4)-α-L-IdopA3S(1→4)-β-D-Glcp3Me(1→; →4)-β-D-Xylp2,3S(1→4)-α-L-IdopA3S(1→; and →4)-β-D-Xylp(1→4)-α-L-IdopA3S(1→. Treatment results indicated that HU markedly decreased levels of TC, LDL-C, TG, and AST. Furthermore, lipid droplets in the liver were reduced, and the abnormal enlargement of epididymal fat cells was suppressed. Thus, HU appears to have a protective effect on the development of NAFLD. Full article
Show Figures

Figure 1

17 pages, 4901 KiB  
Article
Computational Identification of Gene Networks as a Biomarker of Neuroblastoma Risk
by Lidan Sun, Libo Jiang, Christa N. Grant, Hong-Gang Wang, Claudia Gragnoli, Zhenqiu Liu and Rongling Wu
Cancers 2020, 12(8), 2086; https://doi.org/10.3390/cancers12082086 - 28 Jul 2020
Cited by 12 | Viewed by 3279
Abstract
Neuroblastoma is a common cancer in children, affected by a number of genes that interact with each other through intricate but coordinated networks. Traditional approaches can only reconstruct a single regulatory network that is topologically not informative enough to explain the complexity of [...] Read more.
Neuroblastoma is a common cancer in children, affected by a number of genes that interact with each other through intricate but coordinated networks. Traditional approaches can only reconstruct a single regulatory network that is topologically not informative enough to explain the complexity of neuroblastoma risk. We implemented and modified an advanced model for recovering informative, omnidirectional, dynamic, and personalized networks (idopNetworks) from static gene expression data for neuroblastoma risk. We analyzed 3439 immune genes of neuroblastoma for 217 high-risk patients and 30 low-risk patients by which to reconstruct large patient-specific idopNetworks. By converting these networks into risk-specific representations, we found that the shift in patients from a low to high risk or from a high to low risk might be due to the reciprocal change of hub regulators. By altering the directions of regulation exerted by these hubs, it may be possible to reduce a high risk to a low risk. Results from a holistic, systems-oriented paradigm through idopNetworks can potentially enable oncologists to experimentally identify the biomarkers of neuroblastoma and other cancers. Full article
(This article belongs to the Collection Application of Bioinformatics in Cancers)
Show Figures

Figure 1

Back to TopTop