Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = I-AUV

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 10936 KiB  
Article
Towards Autonomous Coordination of Two I-AUVs in Submarine Pipeline Assembly
by Salvador López-Barajas, Alejandro Solis, Raúl Marín-Prades and Pedro J. Sanz
J. Mar. Sci. Eng. 2025, 13(8), 1490; https://doi.org/10.3390/jmse13081490 - 1 Aug 2025
Viewed by 492
Abstract
Inspection, maintenance, and repair (IMR) operations on underwater infrastructure remain costly and time-intensive because fully teleoperated remote operated vehicle s(ROVs) lack the range and dexterity necessary for precise cooperative underwater manipulation, and the alternative of using professional divers is ruled out due to [...] Read more.
Inspection, maintenance, and repair (IMR) operations on underwater infrastructure remain costly and time-intensive because fully teleoperated remote operated vehicle s(ROVs) lack the range and dexterity necessary for precise cooperative underwater manipulation, and the alternative of using professional divers is ruled out due to the risk involved. This work presents and experimentally validates an autonomous, dual-I-AUV (Intervention–Autonomous Underwater Vehicle) system capable of assembling rigid pipeline segments through coordinated actions in a confined underwater workspace. The first I-AUV is a Girona 500 (4-DoF vehicle motion, pitch and roll stable) fitted with multiple payload cameras and a 6-DoF Reach Bravo 7 arm, giving the vehicle 10 total DoF. The second I-AUV is a BlueROV2 Heavy equipped with a Reach Alpha 5 arm, likewise yielding 10 DoF. The workflow comprises (i) detection and grasping of a coupler pipe section, (ii) synchronized teleoperation to an assembly start pose, and (iii) assembly using a kinematic controller that exploits the Girona 500’s full 10 DoF, while the BlueROV2 holds position and orientation to stabilize the workspace. Validation took place in a 12 m × 8 m × 5 m water tank. Results show that the paired I-AUVs can autonomously perform precision pipeline assembly in real water conditions, representing a significant step toward fully automated subsea construction and maintenance. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

21 pages, 8220 KiB  
Article
Network Congestion Control Algorithm for Image Transmission—HRI and Visual Light Communications of an Autonomous Underwater Vehicle for Intervention
by Salvador López-Barajas, Pedro J. Sanz, Raúl Marín-Prades, Juan Echagüe and Sebastian Realpe
Future Internet 2025, 17(1), 10; https://doi.org/10.3390/fi17010010 - 1 Jan 2025
Cited by 3 | Viewed by 1137
Abstract
In this study, the challenge of teleoperating robots in harsh environments such as underwater or in tunnels is addressed. In these environments, wireless communication networks are prone to congestion, leading to potential mission failures. Our approach integrates a Human–Robot Interface (HRI) with a [...] Read more.
In this study, the challenge of teleoperating robots in harsh environments such as underwater or in tunnels is addressed. In these environments, wireless communication networks are prone to congestion, leading to potential mission failures. Our approach integrates a Human–Robot Interface (HRI) with a network congestion control algorithm at the application level for conservative transmission of images using the Robot Operating System (ROS) framework. The system was designed to avoid network congestion by adjusting the image compression parameters and the transmission rate depending on the real-time network conditions. To evaluate its performance, the algorithm was tested in two wireless underwater use cases: pipe inspection and an intervention task. An Autonomous Underwater Vehicle for Intervention (I-AUV) equipped with a Visual Light Communication (VLC) modem was used. Characterization of the VLC network was performed while the robot performed trajectories in the tank. The results demonstrate that our approach allows an operator to perform wireless missions where teleoperation requires images and the network conditions are variable. This solution provides a robust framework for image transmission and network control in the application layer, which allows for integration with any ROS-based system. Full article
Show Figures

Figure 1

18 pages, 1171 KiB  
Article
I-AUV Docking and Panel Intervention at Sea
by Narcís Palomeras, Antonio Peñalver, Miquel Massot-Campos, Pep Lluís Negre, José Javier Fernández, Pere Ridao, Pedro J. Sanz and Gabriel Oliver-Codina
Sensors 2016, 16(10), 1673; https://doi.org/10.3390/s16101673 - 12 Oct 2016
Cited by 36 | Viewed by 8766
Abstract
The use of commercially available autonomous underwater vehicles (AUVs) has increased during the last fifteen years. While they are mainly used for routine survey missions, there is a set of applications that nowadays can be only addressed by manned submersibles or work-class remotely [...] Read more.
The use of commercially available autonomous underwater vehicles (AUVs) has increased during the last fifteen years. While they are mainly used for routine survey missions, there is a set of applications that nowadays can be only addressed by manned submersibles or work-class remotely operated vehicles (ROVs) equipped with teleoperated arms: the intervention applications. To allow these heavy vehicles controlled by human operators to perform intervention tasks, underwater structures like observatory facilities, subsea panels or oil-well Christmas trees have been adapted, making them more robust and easier to operate. The TRITON Spanish founded project proposes the use of a light-weight intervention AUV (I-AUV) to carry out intervention applications simplifying the adaptation of these underwater structures and drastically reducing the operational cost. To prove this concept, the Girona 500 I-AUV is used to autonomously dock into an adapted subsea panel and once docked perform an intervention composed of turning a valve and plugging in/unplugging a connector. The techniques used for the autonomous docking and manipulation as well as the design of an adapted subsea panel with a funnel-based docking system are presented in this article together with the results achieved in a water tank and at sea. Full article
(This article belongs to the Special Issue Vision-Based Sensors in Field Robotics)
Show Figures

Figure 1

Back to TopTop