Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = HyFIS model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1072 KiB  
Article
Evaluation of Total Risk-Weighted Assets in Islamic Banking through Fintech Innovations
by Asma S. Alzwi, Jamil J. Jaber, Hani Nuri Rohuma and Rania Al Omari
J. Risk Financial Manag. 2024, 17(7), 288; https://doi.org/10.3390/jrfm17070288 - 8 Jul 2024
Cited by 2 | Viewed by 2179
Abstract
The assessment of total risk-weighted assets (LTRWAs) in the banking sector is of the utmost importance. It serves as a critical component for regulatory compliance, risk management, and capital adequacy. By accurately assessing LTRWAs, banks can effectively meet regulatory requirements, efficiently allocate capital [...] Read more.
The assessment of total risk-weighted assets (LTRWAs) in the banking sector is of the utmost importance. It serves as a critical component for regulatory compliance, risk management, and capital adequacy. By accurately assessing LTRWAs, banks can effectively meet regulatory requirements, efficiently allocate capital resources, and proactively manage risks. Moreover, the accurate assessment of LTRWAs supports performance evaluation and fosters investor confidence in the financial stability of banks. This study presents statistical analyses and machine learning methods to identify factors influencing LTRWAs. Data from Bahrain, Jordan, Qatar, the United Arab Emirates, and Yemen, spanning from 2010 to 2021, was utilized. Various statistical tests and models, including ordinary least squares, fixed effect, random effect, correlation, variance inflation factor, tolerance tests, and fintech models, were conducted. The results indicated significant impacts of the unemployment rate, inflation rate, natural logarithm of the loan-to-asset ratio, and natural logarithm of total assets on LTRWAs in regression models. The dataset was divided into a training group (90% of the data) and a testing group (10% of the data) to evaluate the predictive capabilities of various fintech models, including an adaptive network-based fuzzy inference system (ANFIS), a hybrid neural fuzzy inference system (HyFIS), a fuzzy system with the heuristic gradient descent (FS.HGD), and fuzzy inference rules with the descent method (FIR.DM) models. The selection of the optimal model is contingent upon assessing its performance according to specific error criteria. The HyFIS model outperformed others with lower errors in predicting LTRWAs. Independent t-tests confirmed statistically significant differences between original and predicted LTRWA for all models, with HyFIS showing closer predictions. This study provides valuable insights into LTRWA prediction using advanced statistical and machine learning techniques, based on a dataset from multiple countries and years. Full article
(This article belongs to the Special Issue Emerging Issues in Economics, Finance and Business)
Show Figures

Figure 1

16 pages, 976 KiB  
Article
Predicting Stock Market Volatility Using MODWT with HyFIS and FS.HGD Models
by Abdullah H. Alenezy, Mohd Tahir Ismail, Sadam Al Wadi and Jamil J. Jaber
Risks 2023, 11(7), 121; https://doi.org/10.3390/risks11070121 - 4 Jul 2023
Cited by 5 | Viewed by 2483
Abstract
We enhance the precision of predicting daily stock market price volatility using the maximum overlapping discrete wavelet transform (MODWT) spectral model and two learning approaches: the heuristic gradient descent (FS.HGD) and hybrid neural fuzzy inference system (HyFIS). The FS.HGD approach iteratively updates the [...] Read more.
We enhance the precision of predicting daily stock market price volatility using the maximum overlapping discrete wavelet transform (MODWT) spectral model and two learning approaches: the heuristic gradient descent (FS.HGD) and hybrid neural fuzzy inference system (HyFIS). The FS.HGD approach iteratively updates the model’s parameters based on the error function gradient, while the HyFIS approach combines the advantages of neural networks and fuzzy logic systems to create a more robust and accurate learning model. The MODWT uses five mathematical functions to form a discrete wavelet basis. The dataset used includes the daily closing prices of the Tadawul stock market from August 2011 to December 2019. Inputs were selected based on multiple regression, tolerance, and variance inflation factor tests, and the oil price (Loil) and repo rate (Repo) were identified as input variables. The output variable is represented by the logarithm of the Tadawul stock market price (LSCS). MODWT-LA8 (ARIMA(1,1,0) with drift) outperforms other WT functions on the 80% dataset, with an ME of (0.00000532), MAE of (0.003214182), and MAPE of (0.06449683). The addition of WT functions to the FS.HGD and HyFIS models increases their forecasting ability. Based on the reduced RMSE (0.048), MAE (0.038), and MAPE (0.538), the MODWT-LA8-FS.HGD outperforms traditional models in predicting the remaining 20% of datasets. Full article
(This article belongs to the Special Issue Time Series Modeling for Finance and Insurance)
Show Figures

Figure 1

Back to TopTop