Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = Himalayan fir

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 7528 KiB  
Article
Spatial Distribution and Population Structure of Himalayan Fir (Abies pindrow (Royle ex D.Don) Royle) in Moist Temperate Forests of the Kashmir Region
by Nuzhat Mir Alam, Hamayun Shaheen, Muhammad Manzoor, Tan Tinghong, Muhammad Arfan and Muhammad Idrees
Forests 2023, 14(3), 482; https://doi.org/10.3390/f14030482 - 27 Feb 2023
Cited by 26 | Viewed by 4186
Abstract
Abies pindrow is a keystone tree species of temperate forests in the Himalayan range with immense ecological significance. The current study was designed to investigate the spatial distribution, population structure, associated flora, and sustainability of Abies pindrow in the temperate forests of Azad [...] Read more.
Abies pindrow is a keystone tree species of temperate forests in the Himalayan range with immense ecological significance. The current study was designed to investigate the spatial distribution, population structure, associated flora, and sustainability of Abies pindrow in the temperate forests of Azad Jammu and Kashmir (AJK), Pakistan. Vegetation data were collected from 48 forest sites distributed in six districts of AJK with respect to the geography, microclimates, and vegetation structure by employing a systematic quadrate-based methodology. Abies pindrow populations were characterized by an average stem density of 183.9 trees/ha with an average basal area cover of 789 cm. A. pindrow populations showed a regeneration value of 555.6 seedlings/ha. A digital elevation model revealed that A. pindrow exhibited a large extent of distribution in an altitudinal range of 1800–3400 m. GIS analysis identified that north-facing slopes with a moderate degree of slope steepness constitutes the preferred habitat of the species in the Kashmir mountains. A floristic analysis revealed that a total of 282 species from 74 plant families comprised the associated flora of A. pindrow-dominated forests with Pinus wallichiana, Picea smithiana, Aesculus indica, and Viburnum grandiflorum as codominant companion species. A. pindrow forests exhibited significant levels of species diversity and richness with average values of Simpson’s diversity as 0.94, Shannon’s diversity as 3.09, species richness as 1.45, and maturity index value as 45.9%. The A. pindrow populations in the study area were found to be subjected to significant deforestation pressure along with overgrazing and erosion impacts. Results provide valuable scientific information for the conservation management of A. pindrow populations, ensuring the sustainability of temperate forest ecosystems in the Western Himalayan region of Kashmir. Full article
(This article belongs to the Section Forest Biodiversity)
Show Figures

Figure 1

21 pages, 12614 KiB  
Article
Climate-Driven Differences in Growth Performance of Cohabitant Fir and Birch in a Subalpine Forest in Dhorpatan Nepal
by Raju Bista, Parveen K. Chhetri, Jeremy S. Johnson, Ashish Sinha and Krishna B. Shrestha
Forests 2021, 12(9), 1137; https://doi.org/10.3390/f12091137 - 24 Aug 2021
Cited by 12 | Viewed by 3426
Abstract
Himalayan Silver Fir (Abies spectabilis) and Himalayan Birch (Betula utilis) are tree species often found coexisting in sub-alpine forests of the Nepal Himalayas. To assess species-specific growth performances of these species, tree-ring samples were collected from the subalpine forest [...] Read more.
Himalayan Silver Fir (Abies spectabilis) and Himalayan Birch (Betula utilis) are tree species often found coexisting in sub-alpine forests of the Nepal Himalayas. To assess species-specific growth performances of these species, tree-ring samples were collected from the subalpine forest in the Dhorpatan Hunting Reserve, Nepal. Standard ring width chronologies of both species were correlated with climatic variables in both static and running windows. Differential and contrasting temporal responses of radial growth of these species to climate were found. Warmer and drier springs appeared to limit birch radial growth. Whereas radial growth of fir showed weakened climate sensitivity. Moving correlation analyses revealed divergent influences of spring climate on both fir and birch. Significant warming that occurred in the 1970s coincided with growth declines in birch and an increase in fir, as indicated by basal area increment. In summary, recent warming has been unfavorable for birch, and favorable to fir radial growth. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

12 pages, 3066 KiB  
Article
June–July Temperature Reconstruction of Kashmir Valley from Tree Rings of Himalayan Pindrow Fir
by Rayees Malik and Raman Sukumar
Atmosphere 2021, 12(3), 410; https://doi.org/10.3390/atmos12030410 - 23 Mar 2021
Cited by 9 | Viewed by 3449
Abstract
The Himalaya is one of the major mountain ecosystems that is most likely to be impacted by climate change. The main drawback in understanding climate change in the remote Himalayan ecosystems is the lack of long-term instrumental climate records. Reconstructing past climates from [...] Read more.
The Himalaya is one of the major mountain ecosystems that is most likely to be impacted by climate change. The main drawback in understanding climate change in the remote Himalayan ecosystems is the lack of long-term instrumental climate records. Reconstructing past climates from tree-rings offers a useful proxy for adding data to the instrumental climate records. In this study, climatically sensitive tree-rings of Himalayan fir (Abies pindrow) were used for reconstruction of mean June–July temperatures of Kashmir valley. Total ring-width chronology was built from 60 tree-ring cores growing near the higher altitudinal limits of the species. The radial growth showed a strong positive response to growing season temperature. The strong response of site chronology to mean June–July temperatures was used for reconstruction purposes. Mean June–July temperatures of Kashmir valley were reconstructed since 1773 from residual site chronology. Though the reconstruction did not show any strong long-term trend, on a centennial-scale, 20th-century summers were the warmest with a mean annual summer temperature of 22.99 °C. Seven of the warmest years and five of the warmest decades were seen in the 20th century. The reconstruction for 1773–2012 showed 23 extreme hot summers above the hot threshold of a 23.47 °C mean temperature and 19 extreme cold years below the cold threshold of a 22.46 °C mean summer temperature. The cold years in the reconstruction did not coincide with known volcanic eruptions. This reconstruction will help in providing a better understanding of regional climate change. Full article
(This article belongs to the Special Issue Past Climate Reconstructed from Tree Rings)
Show Figures

Figure 1

30 pages, 10463 KiB  
Article
Climate Change-Induced Shift of Tree Growth Sensitivity at a Central Himalayan Treeline Ecotone
by Niels Schwab, Ryszard J. Kaczka, Karolina Janecka, Jürgen Böhner, Ram P. Chaudhary, Thomas Scholten and Udo Schickhoff
Forests 2018, 9(5), 267; https://doi.org/10.3390/f9050267 - 13 May 2018
Cited by 53 | Viewed by 8510
Abstract
Himalayan treelines are exposed to above average climate change impact, resulting in complex tree growth–climate relationships for Himalayan Silver Fir (Abies spectabilis (D. Don) Spach) at central Himalayan treelines. The majority of recent studies detected current tree growth sensitivity to dry conditions [...] Read more.
Himalayan treelines are exposed to above average climate change impact, resulting in complex tree growth–climate relationships for Himalayan Silver Fir (Abies spectabilis (D. Don) Spach) at central Himalayan treelines. The majority of recent studies detected current tree growth sensitivity to dry conditions during pre-monsoon seasons. The aim of this study was to analyze growth–climate relationships for more than a century for a treeline ecotone in east-central Nepal and to test for Blue Intensity (BI; used as a surrogate of maximum late wood density) as climate proxy. We determined the relationships of Abies spectabilis radial tree growth and BI to climate by correlating both to temperature, precipitation and drought index data. The results showed a significantly unstable dendroclimatic signal over time. Climate warming-induced moisture deficits during pre-monsoon seasons became a major factor limiting radial tree growth during recent decades. Earlier in time, the dendroclimatic signal was weaker, predominantly reflecting a positive relationship of tree growth and summer temperature. Compared to radial tree growth, BI showed a different but strong climate signal. Temporally unstable correlations may be attributed to increasing effects of above-average rates of climate warming. An extended network of Himalayan tree-ring sites is needed to further analyze cause–effect relationships and to solve this attribution problem. Full article
(This article belongs to the Special Issue Tree-Ring Records of Climatic Impacts on Forests)
Show Figures

Figure 1

Back to TopTop