Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = Hiemenz

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 18738 KiB  
Article
Three-Axis Vibration Isolation of a Full-Scale Magnetorheological Seat Suspension
by Young T. Choi, Norman M. Wereley and Gregory J. Hiemenz
Micromachines 2024, 15(12), 1417; https://doi.org/10.3390/mi15121417 - 26 Nov 2024
Cited by 3 | Viewed by 1203
Abstract
This study examines the three-axis vibration isolation capabilities of a full-scale magnetorheological (MR) seat suspension system utilizing experimental methods to assess performance under both single-axis and simultaneous three-axis input conditions. To achieve this, a semi-active MR seat damper was designed and manufactured to [...] Read more.
This study examines the three-axis vibration isolation capabilities of a full-scale magnetorheological (MR) seat suspension system utilizing experimental methods to assess performance under both single-axis and simultaneous three-axis input conditions. To achieve this, a semi-active MR seat damper was designed and manufactured to address excitations in all three axes. The damper effectiveness was tested experimentally for axial and lateral motions, focusing on dynamic stiffness and loss factor using an MTS machine. Prior to creating the full-scale MR seat suspension, a scaled-down version at one-third size was developed to verify the damper’s ability to effectively reduce vibrations in response to practical excitation levels. Additionally, a narrow-band frequency-shaped semi-active control (NFSSC) algorithm was developed to optimize vibration suppression. Ultimately, a full-scale MR seat suspension was assembled and tested with a 50th percentile male dummy, and comprehensive three-axis vibration isolation tests were conducted on a hydraulic multi-axis simulation table (MAST) for both individual inputs over a frequency range up to 200 Hz and for simultaneous multi-directional inputs. The experimental results demonstrated the effectiveness of the full-scale MR seat suspension in reducing seat vibrations. Full article
Show Figures

Figure 1

20 pages, 4615 KiB  
Article
Chemical MHD Hiemenz Flow over a Nonlinear Stretching Sheet and Brownian Motion Effects of Nanoparticles through a Porous Medium with Radiation Effect
by Faisal Salah, Abdelmgid O. M. Sidahmed and K. K. Viswanathan
Math. Comput. Appl. 2023, 28(1), 21; https://doi.org/10.3390/mca28010021 - 7 Feb 2023
Cited by 4 | Viewed by 2237
Abstract
In this paper, the numerical solutions for magneto-hydrodynamic Hiemenz fluid over a nonlinear stretching sheet and the Brownian motion effects of nanoparticles through a porous medium with chemical reaction and radiation are studied. The repercussions of thermophoresis and mass transfer at the stagnation [...] Read more.
In this paper, the numerical solutions for magneto-hydrodynamic Hiemenz fluid over a nonlinear stretching sheet and the Brownian motion effects of nanoparticles through a porous medium with chemical reaction and radiation are studied. The repercussions of thermophoresis and mass transfer at the stagnation point flow are discussed. The plate progresses in the contrary direction or in the free stream orientation. The underlying PDEs are reshaped into a set of ordinary differential equations employing precise transformation. They are addressed numerically using the successive linearization method, which is an efficient systematic process. The main goal of this study is to compare the solutions obtained using the successive linearization method to solve the velocity and temperature equations in the presence of m changes, thereby demonstrating its accuracy and suitability for solving nonlinear differential equations. For comparison, tables containing the results are presented. This contrast is significant because it demonstrates the accuracy with which a set of nonlinear differential equations can be solved using the successive linearization method. The resulting solution is examined and discussed with respect to a number of engineering parameters. Graphs exemplify the simulation of distinct parameters that govern the motion factors. Full article
Show Figures

Figure 1

21 pages, 881 KiB  
Article
Numerical Investigation of Heat Transfer on Unsteady Hiemenz Cu-Water and Ag-Water Nanofluid Flow over a Porous Wedge Due to Solar Radiation
by Usman Inayat, Shaukat Iqbal, Tareq Manzoor and Muhammad Fahad Zia
Appl. Sci. 2021, 11(22), 10855; https://doi.org/10.3390/app112210855 - 17 Nov 2021
Cited by 3 | Viewed by 2111
Abstract
Nanoparticles are generally used to scatter and absorb solar radiations in nanofluid-based direct solar receivers to efficiently transport and store the heat. However, solar energy absorption in nanofluid can be enhanced by using differential materials and tuning nanofluid parameter. In this regard, theoretical [...] Read more.
Nanoparticles are generally used to scatter and absorb solar radiations in nanofluid-based direct solar receivers to efficiently transport and store the heat. However, solar energy absorption in nanofluid can be enhanced by using differential materials and tuning nanofluid parameter. In this regard, theoretical investigations of unsteady homogeneous Hiemenz flow of an incompressible nanofluid having copper and silver nanoparticles over a porous wedge is carried out by using optimal homotopy asymptotic method (OHAM). Hence, a semi-analytical solver is applied to the transformed system to study the significance of magnetic field along with Prandtl number. In this work, impacts of conductive radiations, heat sink/source, unsteadiness, and flow parameters have been investigated for velocity and temperature profiles of copper and silver nanoparticles-based nanofluid. The effects of magnetic strength, volume fraction of nanoparticles, thermal conductivity, and flow parameters have also been studied on the considered nanofluids. Full article
(This article belongs to the Special Issue Heat Transfer Reinforcement Techniques in Heat Exchangers)
Show Figures

Figure 1

24 pages, 977 KiB  
Article
A CFD Tutorial in Julia: Introduction to Laminar Boundary-Layer Theory
by Furkan Oz and Kursat Kara
Fluids 2021, 6(6), 207; https://doi.org/10.3390/fluids6060207 - 3 Jun 2021
Cited by 3 | Viewed by 7060
Abstract
Numerical simulations of laminar boundary-layer equations are used to investigate the origins of skin-friction drag, flow separation, and aerodynamic heating concepts in advanced undergraduate- and graduate-level fluid dynamics/aerodynamics courses. A boundary-layer is a thin layer of fluid near a solid surface, and viscous [...] Read more.
Numerical simulations of laminar boundary-layer equations are used to investigate the origins of skin-friction drag, flow separation, and aerodynamic heating concepts in advanced undergraduate- and graduate-level fluid dynamics/aerodynamics courses. A boundary-layer is a thin layer of fluid near a solid surface, and viscous effects dominate it. Students must understand the modeling of flow physics and implement numerical methods to conduct successful simulations. Writing computer codes to solve equations numerically is a critical part of the simulation process. Julia is a new programming language that is designed to combine performance and productivity. It is dynamic and fast. However, it is crucial to understand the capabilities of a new programming language before attempting to use it in a new project. In this paper, fundamental flow problems such as Blasius, Hiemenz, Homann, and Falkner-Skan flow equations are derived from scratch and numerically solved using the Julia language. We used the finite difference scheme to discretize the governing equations, employed the Thomas algorithm to solve the resulting linear system, and compared the results with the published data. In addition, we released the Julia codes in GitHub to shorten the learning curve for new users and discussed the advantages of Julia over other programming languages. We found that the Julia language has significant advantages in productivity over other coding languages. Interested readers may access the Julia codes on our GitHub page. Full article
(This article belongs to the Special Issue Teaching and Learning of Fluid Mechanics, Volume II)
Show Figures

Figure 1

Back to TopTop