Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Heraklion Basin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 10285 KiB  
Article
The Arkalochori Mw = 5.9 Earthquake of 27 September 2021 Inside the Heraklion Basin: A Shallow, Blind Rupture Event Highlighting the Orthogonal Extension of Central Crete
by Athanassios Ganas, Yariv Hamiel, Anna Serpetsidaki, Pierre Briole, Sotiris Valkaniotis, Charalampos Fassoulas, Oksana Piatibratova, Haralambos Kranis, Varvara Tsironi, Ioannis Karamitros, Panagiotis Elias and Emmanuel Vassilakis
Geosciences 2022, 12(6), 220; https://doi.org/10.3390/geosciences12060220 - 24 May 2022
Cited by 16 | Viewed by 5413
Abstract
A strong, shallow earthquake occurred near Heraklion (Crete, Greece) on 27 September 2021. The earthquake produced significant ground deformation in the vicinity of Arkalochori village but without any evidence for surface ruptures of primary origin. We used geodetic (InSAR and GNSS) data to [...] Read more.
A strong, shallow earthquake occurred near Heraklion (Crete, Greece) on 27 September 2021. The earthquake produced significant ground deformation in the vicinity of Arkalochori village but without any evidence for surface ruptures of primary origin. We used geodetic (InSAR and GNSS) data to map motions of the Earth’s surface that occurred during and shortly after the earthquake. A 14 cm subsidence of the GNSS station ARKL and a maximum of 19 cm distance from the SAR satellite were recorded. The measured surface displacements were used to constrain the rupture geometry and slip distribution at depth. Our best-fitting inversion model suggests that the rupture occurred on a 13 km-long planar normal fault striking N195° E dipping 55° to the northwest, with major slip occurring to the east and updip of the hypocentre. The fault tip is located 1.2 km beneath the surface. The maximum coseismic slip occurred in the uppermost crust, in the depth interval of 4–6 km. A decrease in the fault offsets toward the Earth’s surface is likely caused by an increased frictional resistance of the shallow layers to rapid coseismic slip. Satellite observations made in the first month after the earthquake detected no post-seismic deformation (i.e., below one fringe or 2.8 cm). The seismic fault may be identified with the Avli (Lagouta) segment of the NNE-SSW striking, west-dipping, 23 km-long neotectonic Kastelli Fault Zone (KFZ). Part of the rupture occurred along the Kastelli segment, indicating a fault segment linkage and a history of overlapping ruptures along KFZ. Based on geological data and footwall topography we estimate an average slip rate between 0.17–0.26 mm/yr for the KFZ. The Arkalochori earthquake is a paradigm example for the on-going extension of Heraklion basin (central Crete) in the WNW-ESE direction, which is almost orthogonal to the E-W Messara graben and other active faults along the south coast of Crete. Full article
(This article belongs to the Special Issue Morphogenic Faulting: Current Practices and Future Challenges)
Show Figures

Figure 1

24 pages, 11419 KiB  
Article
The 27 September 2021 Earthquake in Central Crete (Greece)—Detailed Analysis of the Earthquake Sequence and Indications for Contemporary Arc-Parallel Extension to the Hellenic Arc
by Emmanuel Vassilakis, George Kaviris, Vasilis Kapetanidis, Elena Papageorgiou, Michael Foumelis, Aliki Konsolaki, Stelios Petrakis, Christos P. Evangelidis, John Alexopoulos, Vassilios Karastathis, Nicholas Voulgaris and Gerassimos-Akis Tselentis
Appl. Sci. 2022, 12(6), 2815; https://doi.org/10.3390/app12062815 - 9 Mar 2022
Cited by 18 | Viewed by 5180
Abstract
The Arkalochori village in central Crete was hit by a large earthquake (Mw = 6.0) on 27 September 2021, causing casualties, injuries, and severe damage to the infrastructure. Due to the absence of apparent surface rupture and the initial focal mechanism [...] Read more.
The Arkalochori village in central Crete was hit by a large earthquake (Mw = 6.0) on 27 September 2021, causing casualties, injuries, and severe damage to the infrastructure. Due to the absence of apparent surface rupture and the initial focal mechanism solution of the seismic event, we initiated complementary, multi-disciplinary research by combining seismological and remote sensing data processing, followed by extensive field validation. Detailed geological mapping, fault surface measuring accompanied with tectonic analysis, fault photorealistic model creation by unmanned aerial system data processing, post-seismic surface deformation analysis by DInSAR image interpretation coupled with accurately relocated epicenters recorded by locally established seismographs have been carried out. The combination of the results obtained from these techniques led to the determination of the contemporary tectonic stress regime that caused the earthquake in central Crete, which was found compatible with extensional processes parallel to the Hellenic arc. Full article
(This article belongs to the Special Issue Mapping, Monitoring and Assessing Disasters)
Show Figures

Figure 1

Back to TopTop