Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = Hematococcus pluvialis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2581 KB  
Article
Ecotoxicity of Caffeine as a Bio-Protective Component of Flax-Fiber-Reinforced Epoxy-Composite Building Material
by Klára Kobetičová, Jana Nábělková, Viktor Brejcha, Martin Böhm, Miloš Jerman, Jiří Brich and Robert Černý
Polymers 2023, 15(19), 3901; https://doi.org/10.3390/polym15193901 - 27 Sep 2023
Cited by 2 | Viewed by 1998
Abstract
Caffeine is a verified bio-protective substance in the fight against the biodegradation of cellulose materials, but its ecotoxicity in this context has not yet been studied. For this reason, the ecotoxicity of flax-fiber-reinforced epoxy composite with or without caffeine was tested in the [...] Read more.
Caffeine is a verified bio-protective substance in the fight against the biodegradation of cellulose materials, but its ecotoxicity in this context has not yet been studied. For this reason, the ecotoxicity of flax-fiber-reinforced epoxy composite with or without caffeine was tested in the present study. Prepared samples of the composite material were tested on freshwater green algal species (Hematococcus pluvialis), yeasts (Saccharomyces cerevisae), and crustacean species (Daphnia magna). Aqueous eluates were prepared from the studied material (with caffeine addition (12%) and without caffeine and pure flax fibers), which were subjected to chemical analysis for the residues of caffeine or metals. The results indicate the presence of caffeine up to 0.001 mg/L. The eluate of the studied material was fully toxic for daphnids and partially for algae and yeasts, but the presence of caffeine did not increase its toxicity statistically significantly, in all cases. The final negative biological effects were probably caused by the mix of heavy metal residues and organic substances based on epoxy resins released directly from the tested composite material. Full article
Show Figures

Figure 1

14 pages, 1863 KB  
Article
Identification and Content of Astaxanthin and Its Esters from Microalgae Haematococcus pluvialis by HPLC-DAD and LC-QTOF-MS after Extraction with Various Solvents
by Biljana Todorović, Veno Jaša Grujić, Andreja Urbanek Krajnc, Roman Kranvogl and Jana Ambrožič-Dolinšek
Plants 2021, 10(11), 2413; https://doi.org/10.3390/plants10112413 - 9 Nov 2021
Cited by 28 | Viewed by 8163
Abstract
Haematococcus pluvialis, a unicellular green microalga that produces a secondary metabolite under stress conditions, bears one of the most potent antioxidants, namely xanthophyll astaxanthin. The aim of our study was to determine the content of astaxanthin and its esterified forms using three [...] Read more.
Haematococcus pluvialis, a unicellular green microalga that produces a secondary metabolite under stress conditions, bears one of the most potent antioxidants, namely xanthophyll astaxanthin. The aim of our study was to determine the content of astaxanthin and its esterified forms using three different solvents—methyl tert-butyl ether (MTBE), hexane isopropanol (HEX -IPA) and acetone (ACE)—and to identify them by using high performance liquid chromatography coupled with diode array detection and the quadrupole time-of-flight mass spectrometry (HPLC-DAD and LC-QTOF-MS) technique. We identified eleven astaxanthin monoesters, which accounted for 78.8% of the total astaxanthin pool, six astaxanthin diesters (20.5% of total), while free astaxanthin represented the smallest fraction (0.7%). Astaxanthin monoesters (C16:2, C16:1, C16:0), which were the major bioactive compounds in the H. pluvialis samples studied, ranged from 10.2 to 11.8 mg g−1 DW. Astaxanthin diesters (C18:4/C18:3, C18:1/C18:3) were detected in the range between 2.3 and 2.6 mg g−1 DW. All three solvents were found to be effective for extraction, but MTBE and hexane-isopropanol extracted the greatest amount of free bioactive astaxanthin. Furthermore, MTBE extracted more low-chain astaxanthin monoesters (C16), and hexane-isopropanol extracted more long-chain monoesters (C18 and above) and more diesters. We can conclude that MTBE is the solvent of choice for the extraction of monoesters and hexane-isopropanol for diesters. Full article
(This article belongs to the Special Issue Structural and Functional Analysis of Extracts in Plants II)
Show Figures

Figure 1

10 pages, 925 KB  
Article
The Effect of Astaxanthin-Rich Microalgae “Haematococcus pluvialis” and Wholemeal Flours Incorporation in Improving the Physical and Functional Properties of Cookies
by A. K. M. Mofasser Hossain, Margaret A. Brennan, Susan L. Mason, Xinbo Guo, Xin An Zeng and Charles S. Brennan
Foods 2017, 6(8), 57; https://doi.org/10.3390/foods6080057 - 26 Jul 2017
Cited by 120 | Viewed by 10426
Abstract
Marine-based food supplements can improve human nutrition. In an effort to modulate glycaemic response and enhance nutritional aspects, marine-derived algal food rich in astaxanthin was used in the formulation of a model food (wholemeal cookie). Astaxanthin substitution of cookies made from three flours [...] Read more.
Marine-based food supplements can improve human nutrition. In an effort to modulate glycaemic response and enhance nutritional aspects, marine-derived algal food rich in astaxanthin was used in the formulation of a model food (wholemeal cookie). Astaxanthin substitution of cookies made from three flours (wheat, barley and oat) demonstrated a significant reduction in the rate of glucose released during in vitro digestion together with an increase in the total phenolic content (TPC) and antioxidant capacity of the food. The significantly (p < 0.005) lower free glucose release was observed from cookies with 15% astaxanthin, followed by 10% and then 5% astaxanthin in comparison with control cookies of each flour. Total phenolic content, DPPH radical scavenging and Oxygen Radical Absorbance Capacity (ORAC) value also notably increased with increase in astaxanthin content. The results evidence the potential use of microalgae to enhance the bioactive compounds and lower the glycaemic response of wholemeal flour cookie. Full article
(This article belongs to the Special Issue Grain-based Foods: Processing, Properties, and Heath Attributes)
Show Figures

Figure 1

Back to TopTop