Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = General Ocean Model (GOM)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3182 KB  
Article
Implementation of a Second-Order TVD Transport Algorithm in the General Ocean Model (GOM)
by Jungwoo Lee, Jun Lee, Sang-Leen Yun and Seog-Ku Kim
J. Mar. Sci. Eng. 2025, 13(7), 1296; https://doi.org/10.3390/jmse13071296 - 30 Jun 2025
Viewed by 449
Abstract
This study presents the implementation of a scalar transport algorithm in the recently developed General Ocean Model (GOM), a three-dimensional, unstructured grid, finite volume/finite difference model. Solving the advection–diffusion transport equation is an essential part of any ocean circulation model since the baroclinic [...] Read more.
This study presents the implementation of a scalar transport algorithm in the recently developed General Ocean Model (GOM), a three-dimensional, unstructured grid, finite volume/finite difference model. Solving the advection–diffusion transport equation is an essential part of any ocean circulation model since the baroclinic density gradient distinguishes saline water from freshwater. To achieve both high accuracy and computational efficiency, we adopted a second-order semi-implicit Total Variation Diminishing (TVD) scheme. The TVD approach, known for its ability to suppress non-physical oscillations near steep gradients, provides a higher-fidelity representation of salinity fronts without introducing significant numerical artifacts. The TVD algorithm is constructed with the first-order Upwind scheme, which is known for suffering from excessive numerical diffusion, and the higher-order anti-diffusive flux term. The implemented transport algorithm is evaluated using two standard test cases, an ideal lock exchange problem and a U-shaped channel problem, and it is further applied to simulate salinity dynamics in Mobile Bay, Alabama. The model results from both the first-order Upwind and second-order TVD schemes are compared. The results indicate that the TVD scheme marginally improves the resolution of salinity fronts while maintaining computational stability and efficiency. The implementation enables a flexible and straightforward transition between the first-order scheme, which is faster than the second-order scheme, and the second-order scheme, which is less diffusive than the first-order scheme, enhancing the GOM’s capability for realistic and efficient salinity simulations in a tidally driven estuarine system. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

29 pages, 8375 KB  
Article
Three-Dimensional Unstructured Grid Finite-Volume Model for Coastal and Estuarine Circulation and Its Application
by Jun Lee, Jungwoo Lee, Sang-Leen Yun and Seog-Ku Kim
Water 2020, 12(10), 2752; https://doi.org/10.3390/w12102752 - 2 Oct 2020
Cited by 8 | Viewed by 3517
Abstract
We developed a three-dimensional unstructured grid coastal and estuarine circulation model, named the General Ocean Model (GOM). Combining the finite volume and finite difference methods, GOM achieved both the exact conservation and computational efficiency. The propagation term was implemented by a semi-implicit numerical [...] Read more.
We developed a three-dimensional unstructured grid coastal and estuarine circulation model, named the General Ocean Model (GOM). Combining the finite volume and finite difference methods, GOM achieved both the exact conservation and computational efficiency. The propagation term was implemented by a semi-implicit numerical scheme, the so-called θ scheme, and the time-explicit Eulerian–Lagrangian method was used to discretize the nonlinear advection term to remove the major limitation of the time step, which appears when solving shallow water equations, by the Courant–Friedrichs–Lewy stability condition. Because the GOM uses orthogonal unstructured computational grids, allowing both triangular and quadrilateral grids, considerable flexibility to resolve complex coastal boundaries is allowed without any transformation of governing equations. The GOM was successfully verified with five analytical solutions, and it was also validated when applied to the Texas coast, showing an overall skill value of 0.951. The verification results showed that the algorithm used in GOM was correctly coded, and it is efficient and robust. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

26 pages, 21287 KB  
Article
An Improved Method to Estimate the Probability of Oil Spill Contact to Environmental Resources in the Gulf of Mexico
by Zhen Li and Walter Johnson
J. Mar. Sci. Eng. 2019, 7(2), 41; https://doi.org/10.3390/jmse7020041 - 8 Feb 2019
Cited by 11 | Viewed by 5134
Abstract
The oil spill risk analysis (OSRA) model is a tool used by the Bureau of Ocean Energy Management (BOEM) to evaluate oil spill risks to biological, physical, and socioeconomic resources that could be exposed to oil spill contact from oil and gas leasing, [...] Read more.
The oil spill risk analysis (OSRA) model is a tool used by the Bureau of Ocean Energy Management (BOEM) to evaluate oil spill risks to biological, physical, and socioeconomic resources that could be exposed to oil spill contact from oil and gas leasing, exploration, or development on the U.S. Outer Continental Shelf (OCS). Using long-term hindcast winds and ocean currents, the OSRA model generates hundreds of thousands of trajectories from hypothetical oil spill locations and derives the probability of contact to these environmental resources in the U.S. OCS. This study generates probability of oil spill contact maps by initiating trajectories from hypothetical oil spill points over the entire planning areas in the U.S. Gulf of Mexico (GOM) OCS and tabulating the contacts over the entire waters in the GOM. Therefore, a probability of oil spill contact database that stores information of the spill points and contacts can be created for a given set of wind and current data such that the probability of oil spill contact to any environmental resources from future leasing areas can be estimated without a rerun of the OSRA model. The method can be applied to other OCS regions and help improve BOEM’s decision-making process. Full article
(This article belongs to the Special Issue Marine Oil Spills 2018)
Show Figures

Figure 1

Back to TopTop