Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = Gekkota

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 7368 KiB  
Article
The Phylogenetic Relationships of Major Lizard Families Using Mitochondrial Genomes and Selection Pressure Analyses in Anguimorpha
by Lemei Zhan, Yuxin Chen, Jingyi He, Zhiqiang Guo, Lian Wu, Kenneth B. Storey, Jiayong Zhang and Danna Yu
Int. J. Mol. Sci. 2024, 25(15), 8464; https://doi.org/10.3390/ijms25158464 - 2 Aug 2024
Cited by 3 | Viewed by 2481
Abstract
Anguimorpha, within the order Squamata, represents a group with distinct morphological and behavioral characteristics in different ecological niches among lizards. Within Anguimorpha, there is a group characterized by limb loss, occupying lower ecological niches, concentrated within the subfamily Anguinae. Lizards with limbs and [...] Read more.
Anguimorpha, within the order Squamata, represents a group with distinct morphological and behavioral characteristics in different ecological niches among lizards. Within Anguimorpha, there is a group characterized by limb loss, occupying lower ecological niches, concentrated within the subfamily Anguinae. Lizards with limbs and those without exhibit distinct locomotor abilities when adapting to their habitats, which in turn necessitate varying degrees of energy expenditure. Mitochondria, known as the metabolic powerhouses of cells, play a crucial role in providing approximately 95% of an organism’s energy. Functionally, mitogenomes (mitochondrial genomes) can serve as a valuable tool for investigating potential adaptive evolutionary selection behind limb loss in reptiles. Due to the variation of mitogenome structures among each species, as well as its simple genetic structure, maternal inheritance, and high evolutionary rate, the mitogenome is increasingly utilized to reconstruct phylogenetic relationships of squamate animals. In this study, we sequenced the mitogenomes of two species within Anguimorpha as well as the mitogenomes of two species in Gekkota and four species in Scincoidea. We compared these data with the mitogenome content and evolutionary history of related species. Within Anguimorpha, between the mitogenomes of limbless and limbed lizards, a branch-site model analysis supported the presence of 10 positively selected sites: Cytb protein (at sites 183 and 187), ND2 protein (at sites 90, 155, and 198), ND3 protein (at site 21), ND5 protein (at sites 12 and 267), and ND6 protein (at sites 72 and 119). These findings suggested that positive selection of mitogenome in limbless lizards may be associated with the energy requirements for their locomotion. Additionally, we acquired data from 205 mitogenomes from the NCBI database. Bayesian inference (BI) and Maximum Likelihood (ML) trees were constructed using the 13 mitochondrial protein-coding genes (PCGs) and two rRNAs (12S rRNA and 16S rRNA) from 213 mitogenomes. Our phylogenetic tree and the divergence time estimates for Squamata based on mitogenome data are consistent with results from previous studies. Gekkota was placed at the root of Squamata in both BI and ML trees. However, within the Toxicofera clade, due to long-branch attraction, Anguimorpha and (Pleurodonta + (Serpentes + Acrodonta)) were closely related groupings, which might indicate errors and also demonstrate that mitogenome-based phylogenetic trees may not effectively resolve long-branch attraction issues. Additionally, we reviewed the origin and diversification of Squamata throughout the Mesozoic era, suggesting that Squamata originated in the Late Triassic (206.05 Mya), with the diversification of various superfamilies occurring during the Cretaceous period. Future improvements in constructing squamate phylogenetic relationships using mitogenomes will rely on identifying snake and acrodont species with slower evolutionary rates, ensuring comprehensive taxonomic coverage of squamate diversity, and increasing the number of genes analyzed. Full article
Show Figures

Figure 1

29 pages, 85766 KiB  
Article
Histological Analysis of Gonadal Ridge Development and Sex Differentiation of Gonads in Three Gecko Species
by Izabela Rams-Pociecha, Paulina C. Mizia and Rafal P. Piprek
Biology 2024, 13(1), 7; https://doi.org/10.3390/biology13010007 - 22 Dec 2023
Cited by 2 | Viewed by 2914
Abstract
Reptiles constitute a highly diverse group of vertebrates, with their evolutionary lineages having diverged relatively early. The types of sex determination exemplify the diversity of reptiles; however, there are limited data regarding the gonadal development in squamate reptiles. Geckos constitute a group that [...] Read more.
Reptiles constitute a highly diverse group of vertebrates, with their evolutionary lineages having diverged relatively early. The types of sex determination exemplify the diversity of reptiles; however, there are limited data regarding the gonadal development in squamate reptiles. Geckos constitute a group that is increasingly used in research and that serves as a potential reptilian model organism. The aim of this study was to trace the changes in the structure of developing gonads in the embryos of three gecko species: the crested gecko, leopard gecko, and mourning gecko. These species represent different families of the Gekkota infraorder and exhibit different types of sex determination. Gonadal development was examined from the formation of the earliest gonadal ridges through the development of undifferentiated gonadal structures, sex differentiation of gonads, and the formation of testicular and ovarian structures. The study showed that the gonadal primordia of these three gecko species formed on the most dorsally located surface of the dorsal mesentery, and both the coelomic epithelium and the nephric mesenchyme contributed to their development. As in other reptile species, primordial germ cells settled in the gonadal ridges, and the undifferentiated gonad was composed of a cortex and a medulla. Ovarian differentiation started with the thickening of the gonadal cortex and proliferation of germ cells in this region. A characteristic feature of the developing gecko ovaries was the thickened crescent-shaped cortex on the medial and ventral surfaces of the ovaries. The ovarian medulla also grew and exhibited diverse tendencies to form cords. In the leopard gecko, advanced cord-like structures with lumens were observed in the ovaries, which were not seen in the crested gecko. Testicular differentiation was characterized by cortical thinning and the disappearance of germ cells in this region. In the medulla, the development of distinct cords with early lumen formation was noted. A characteristic feature of embryonic gonads was their growth in a horizontal plane. In this study, gonadal development was characterized by several features that are shared by geckos and other reptiles, along with features that are specific only to geckos. Full article
(This article belongs to the Special Issue Mechanisms of Sex Determination and Gonad Development)
Show Figures

Figure 1

12 pages, 2327 KiB  
Article
Cytogenetic Analysis of Seven Species of Gekkonid and Phyllodactylid Geckos
by Gabriela Chrostek, Aleksandra Domaradzka, Alona Yurchenko, Lukáš Kratochvíl, Sofia Mazzoleni and Michail Rovatsos
Genes 2023, 14(1), 178; https://doi.org/10.3390/genes14010178 - 9 Jan 2023
Cited by 5 | Viewed by 3274
Abstract
Geckos (Gekkota), the species-rich clade of reptiles with more than 2200 currently recognized species, demonstrate a remarkable variability in diploid chromosome numbers (2n = 16–48) and mode of sex determination. However, only a small fraction of gekkotan species have been studied with cytogenetic [...] Read more.
Geckos (Gekkota), the species-rich clade of reptiles with more than 2200 currently recognized species, demonstrate a remarkable variability in diploid chromosome numbers (2n = 16–48) and mode of sex determination. However, only a small fraction of gekkotan species have been studied with cytogenetic methods. Here, we applied both conventional (karyotype reconstruction and C-banding) and molecular (fluorescence in situ hybridization with probes for rDNA loci and telomeric repeats) cytogenetic analyses in seven species of geckos, namely Blaesodactylus boivini, Chondrodactylus laevigatus, Gekko badenii, Gekko cf. lionotum, Hemidactylus sahgali, Homopholis wahlbergii (Gekkonidae) and Ptyodactylus togoensis (Phyllodactylidae), in order to provide further insights into the evolution of karyotypes in geckos. Our analysis revealed the presence of interstitial telomeric repeats in four species, but we were not able to conclude if they are remnants of previous chromosome rearrangements or were formed by an accumulation of telomeric-like satellite motifs. Even though sex chromosomes were previously identified in several species from the genera Hemidactylus and Gekko by cytogenetic and/or genomic methods, they were not detected by us in any examined species. Our examined species either have poorly differentiated sex chromosomes or, possibly, environmental sex determination. Future studies should explore the effect of temperature and conduct genome-wide analyses in order to identify the mode of sex determination in these species. Full article
(This article belongs to the Collection Feature Papers in ‘Animal Genetics and Genomics’)
Show Figures

Figure 1

41 pages, 14846 KiB  
Article
New Morphological and Molecular Data Reveal an Underestimation of Species Diversity of Mites of the Genus Geckobia (Acariformes: Pterygosomatidae) in India
by Monika Fajfer and Praveen Karanth
Diversity 2022, 14(12), 1064; https://doi.org/10.3390/d14121064 - 2 Dec 2022
Cited by 2 | Viewed by 3124
Abstract
Mites of the genus Geckobia (Acariformes: Pterygosomatidae) are permanent and highly specialised ectoparasites of geckos (Gekkota). We conducted a local study on Geckobia mites associated with the geckos of the family Gekkonidae found mainly in the territory of the Indian Institute of Science’s [...] Read more.
Mites of the genus Geckobia (Acariformes: Pterygosomatidae) are permanent and highly specialised ectoparasites of geckos (Gekkota). We conducted a local study on Geckobia mites associated with the geckos of the family Gekkonidae found mainly in the territory of the Indian Institute of Science’s campus (Bangalore, India). In total, we examined 208 lizards belonging to two genera: Hemidactylus and Cnemaspis. We assessed the prevalence of the mites and identified the preferred site for their infestation. We extended the standard morphological identification of the mite species by using DNA barcode markers, partial sequences of the mitochondrial cytochrome c oxidase subunit I (COI) gene and nuclear ribosomal gene sequences: 18S rRNA and hypervariable region D2 of nuclear 28S rRNA. We checked the suitability of COI and nuclear (D2 of 28S rRNA) markers for species delimitations and identification purposes of the genus. The distance- and phylogeny-based approaches were applied: (i) to test the presence of a barcoding gap, we used the automated barcoding gap discovery tool (ABGD) and investigated intra- and interspecific genetic distances, and (ii) to reconstruct evolutionary relationships within the species, we performed maximum likelihood (ML) and Bayesian inference with Markov-Chain Monte Carlo (BI) analyses. As a result, we described five new species—Geckobia gigantea sp. n., G. treutleri sp. n., G. unica sp. n. and G. brevicephala sp. n.—from four Hemidactylus species: H. giganteus, H. treutleri, H. parvimaculatus and H. frenatus, respectively, and G. mysoriensis sp. n. from Cnemaspis mysoriensis. Additionally, we found three already described species: Geckobia indica Hirst, 1917 on H. treutleri (new host), Geckobia bataviensis Vitzhum, 1926 on H. parvimaculatus (new host) and H. frenatus (new locality) and Geckobia phillipinensis Lawrence, 1953 on H. frenatus (new locality). The diagnoses of G. indica and G. phillipinensis were improved and supplemented by descriptions of the males and juveniles. Both topologies of the BI and ML phylogenetic trees, as well as genetic distances, supported the species boundaries in the mite population shown by the morphological data. Hemidactylus frenatus was the most infected gecko species (61% prevalence), with the highest number of mite species (three spp.). The scale-mite richness was higher than expected; therefore, further research is required to evaluate the true diversity of Geckobia mites. Full article
(This article belongs to the Special Issue Host-Parasitic Mite Interactions and Co-evolution)
Show Figures

Figure 1

11 pages, 1411 KiB  
Article
Sex Chromosome Turnover in Bent-Toed Geckos (Cyrtodactylus)
by Shannon E. Keating, Madison Blumer, L. Lee Grismer, Aung Lin, Stuart V. Nielsen, Myint Kyaw Thura, Perry L. Wood, Evan S. H. Quah and Tony Gamble
Genes 2021, 12(1), 116; https://doi.org/10.3390/genes12010116 - 19 Jan 2021
Cited by 20 | Viewed by 4621
Abstract
Lizards and snakes (squamates) are known for their varied sex determining systems, and gecko lizards are especially diverse, having evolved sex chromosomes independently multiple times. While sex chromosomes frequently turnover among gecko genera, intrageneric turnovers are known only from Gekko and Hemidactylus. [...] Read more.
Lizards and snakes (squamates) are known for their varied sex determining systems, and gecko lizards are especially diverse, having evolved sex chromosomes independently multiple times. While sex chromosomes frequently turnover among gecko genera, intrageneric turnovers are known only from Gekko and Hemidactylus. Here, we used RADseq to identify sex-specific markers in two species of Burmese bent-toed geckos. We uncovered XX/XY sex chromosomes in Cyrtodactylus chaunghanakwaensis and ZZ/ZW sex chromosomes in Cyrtodactylus pharbaungensis. This is the third instance of intrageneric turnover of sex chromosomes in geckos. Additionally, Cyrtodactylus are closely related to another genus with intrageneric turnover, Hemidactylus. Together, these data suggest that sex chromosome turnover may be common in this clade, setting them apart as exceptionally diverse in a group already known for diverse sex determination systems. Full article
Show Figures

Figure 1

11 pages, 2041 KiB  
Article
Independent Evolution of Sex Chromosomes in Eublepharid Geckos, A Lineage with Environmental and Genotypic Sex Determination
by Eleonora Pensabene, Lukáš Kratochvíl and Michail Rovatsos
Life 2020, 10(12), 342; https://doi.org/10.3390/life10120342 - 10 Dec 2020
Cited by 17 | Viewed by 5024
Abstract
Geckos demonstrate a remarkable variability in sex determination systems, but our limited knowledge prohibits accurate conclusions on the evolution of sex determination in this group. Eyelid geckos (Eublepharidae) are of particular interest, as they encompass species with both environmental and genotypic sex determination. [...] Read more.
Geckos demonstrate a remarkable variability in sex determination systems, but our limited knowledge prohibits accurate conclusions on the evolution of sex determination in this group. Eyelid geckos (Eublepharidae) are of particular interest, as they encompass species with both environmental and genotypic sex determination. We identified for the first time the X-specific gene content in the Yucatán banded gecko, Coleonyx elegans, possessing X1X1X2X2/X1X2Y multiple sex chromosomes by comparative genome coverage analysis between sexes. The X-specific gene content of Coleonyx elegans was revealed to be partially homologous to genomic regions linked to the chicken autosomes 1, 6 and 11. A qPCR-based test was applied to validate a subset of X-specific genes by comparing the difference in gene copy numbers between sexes, and to explore the homology of sex chromosomes across eleven eublepharid, two phyllodactylid and one sphaerodactylid species. Homologous sex chromosomes are shared between Coleonyx elegans and Coleonyx mitratus, two species diverged approximately 34 million years ago, but not with other tested species. As far as we know, the X-specific gene content of Coleonyx elegans / Coleonyx mitratus was never involved in the sex chromosomes of other gecko lineages, indicating that the sex chromosomes in this clade of eublepharid geckos evolved independently. Full article
(This article belongs to the Section Evolutionary Biology)
Show Figures

Figure 1

Back to TopTop