Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Gaussian scatter search strategy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
38 pages, 2076 KiB  
Article
A Multi-Strategy Enhanced Hybrid Ant–Whale Algorithm and Its Applications in Machine Learning
by Chenyang Gao, Yahua He and Yuelin Gao
Mathematics 2024, 12(18), 2848; https://doi.org/10.3390/math12182848 - 13 Sep 2024
Cited by 1 | Viewed by 1210
Abstract
Based on the principles of biomimicry, evolutionary algorithms (EAs) have been widely applied across diverse domains to tackle practical challenges. However, the inherent limitations of these algorithms call for further refinement to strike a delicate balance between global exploration and local exploitation. Thus, [...] Read more.
Based on the principles of biomimicry, evolutionary algorithms (EAs) have been widely applied across diverse domains to tackle practical challenges. However, the inherent limitations of these algorithms call for further refinement to strike a delicate balance between global exploration and local exploitation. Thus, this paper introduces a novel multi-strategy enhanced hybrid algorithm called MHWACO, which integrates a Whale Optimization Algorithm (WOA) and Ant Colony Optimization (ACO). Initially, MHWACO employs Gaussian perturbation optimization for individual initialization. Subsequently, individuals selectively undertake either localized exploration based on the refined WOA or global prospecting anchored in the Golden Sine Algorithm (Golden-SA), determined by transition probabilities. Inspired by the collaborative behavior of ant colonies, a Flight Ant (FA) strategy is proposed to guide unoptimized individuals toward potential global optimal solutions. Finally, the Gaussian scatter search (GSS) strategy is activated during low population activity, striking a balance between global exploration and local exploitation capabilities. Moreover, the efficacy of Support Vector Regression (SVR) and random forest (RF) as regression models heavily depends on parameter selection. In response, we have devised the MHWACO-SVM and MHWACO-RF models to refine the selection of parameters, applying them to various real-world problems such as stock prediction, housing estimation, disease forecasting, fire prediction, and air quality monitoring. Experimental comparisons against 9 newly proposed intelligent optimization algorithms and 9 enhanced algorithms across 34 benchmark test functions and the CEC2022 benchmark suite, highlight the notable superiority and efficacy of MSWOA in addressing global optimization problems. Finally, the proposed MHWACO-SVM and MHWACO-RF models outperform other regression models across key metrics such as the Mean Bias Error (MBE), Coefficient of Determination (R2), Mean Absolute Error (MAE), Explained Variance Score (EVS), and Median Absolute Error (MEAE). Full article
Show Figures

Figure 1

40 pages, 1283 KiB  
Article
Feature Selection Using Enhanced Particle Swarm Optimisation for Classification Models
by Hailun Xie, Li Zhang, Chee Peng Lim, Yonghong Yu and Han Liu
Sensors 2021, 21(5), 1816; https://doi.org/10.3390/s21051816 - 5 Mar 2021
Cited by 39 | Viewed by 7512
Abstract
In this research, we propose two Particle Swarm Optimisation (PSO) variants to undertake feature selection tasks. The aim is to overcome two major shortcomings of the original PSO model, i.e., premature convergence and weak exploitation around the near optimal solutions. The first proposed [...] Read more.
In this research, we propose two Particle Swarm Optimisation (PSO) variants to undertake feature selection tasks. The aim is to overcome two major shortcomings of the original PSO model, i.e., premature convergence and weak exploitation around the near optimal solutions. The first proposed PSO variant incorporates four key operations, including a modified PSO operation with rectified personal and global best signals, spiral search based local exploitation, Gaussian distribution-based swarm leader enhancement, and mirroring and mutation operations for worst solution improvement. The second proposed PSO model enhances the first one through four new strategies, i.e., an adaptive exemplar breeding mechanism incorporating multiple optimal signals, nonlinear function oriented search coefficients, exponential and scattering schemes for swarm leader, and worst solution enhancement, respectively. In comparison with a set of 15 classical and advanced search methods, the proposed models illustrate statistical superiority for discriminative feature selection for a total of 13 data sets. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

Back to TopTop